疲勞是導致水域事故的一個已知因素,降低了操作效率,並影響了作戰人員的健康。戰士認知狀態的實時反饋將允許提高對能力/限製的認識,並根據戰士的準備情況作出適應性決策。使用機器學習(ML)和可穿戴技術的疲勞檢測/預測項目旨在開發一種ML算法,能夠檢測出副交感神經係統(PNS)的變化,這些變化通過使用商用現成(COTS)腕戴設備檢測,進一步可分析認知疲勞。收集了30名參與者(包括一些現役軍人)執行可量化的警戒任務的生物識別數據集,並對操作者的表現指標和認知負荷進行了注釋。麥克沃思(Mackworth )時鍾是一項廣泛用於心理測量研究以量化認知參與和疲勞的警覺性任務,它的變體被用來生成定量的操作者績效指標和離散的認知負荷狀態。在有注釋的生物識別數據集上訓練和驗證了ML模型,以:1)回歸操作者任務表現的準確性,以及2)對認知負荷/任務難度進行分類。一個訓練有素的卷積神經網絡(CNN)回歸模型能夠預測麥克沃思鍾任務表現的準確性,平均絕對誤差在2.5%以內。此外,一個單獨的CNN分類器模型達到了86.5%的二元任務類型分類準確率,不同類型的任務對應著較高和較低的認知負荷。該研究與開發(R&D)工作的下一階段將包括與海軍有關的任務(即船舶導航、軌道管理和其他站崗任務)的額外測試活動,參與者僅包括現役人員。這項工作的最終目標是提供一個可穿戴設備和配套的軟件,能夠檢測和預測各種與海軍有關的任務的認知疲勞,目的是優化作戰人員的表現,以減少用戶的錯誤或最大限度地提高性能。

"> 美國海軍《使用機器學習和可穿戴技術進行疲勞檢測/預測》 - 專知VIP

疲勞是導致水域事故的一個已知因素,降低了操作效率,並影響了作戰人員的健康。戰士認知狀態的實時反饋將允許提高對能力/限製的認識,並根據戰士的準備情況作出適應性決策。使用機器學習(ML)和可穿戴技術的疲勞檢測/預測項目旨在開發一種ML算法,能夠檢測出副交感神經係統(PNS)的變化,這些變化通過使用商用現成(COTS)腕戴設備檢測,進一步可分析認知疲勞。收集了30名參與者(包括一些現役軍人)執行可量化的警戒任務的生物識別數據集,並對操作者的表現指標和認知負荷進行了注釋。麥克沃思(Mackworth )時鍾是一項廣泛用於心理測量研究以量化認知參與和疲勞的警覺性任務,它的變體被用來生成定量的操作者績效指標和離散的認知負荷狀態。在有注釋的生物識別數據集上訓練和驗證了ML模型,以:1)回歸操作者任務表現的準確性,以及2)對認知負荷/任務難度進行分類。一個訓練有素的卷積神經網絡(CNN)回歸模型能夠預測麥克沃思鍾任務表現的準確性,平均絕對誤差在2.5%以內。此外,一個單獨的CNN分類器模型達到了86.5%的二元任務類型分類準確率,不同類型的任務對應著較高和較低的認知負荷。該研究與開發(R&D)工作的下一階段將包括與海軍有關的任務(即船舶導航、軌道管理和其他站崗任務)的額外測試活動,參與者僅包括現役人員。這項工作的最終目標是提供一個可穿戴設備和配套的軟件,能夠檢測和預測各種與海軍有關的任務的認知疲勞,目的是優化作戰人員的表現,以減少用戶的錯誤或最大限度地提高性能。

成為VIP會員查看完整內容
9
19

相關內容

人工智能在軍事中可用於多項任務,例如目標識別、大數據處理、作戰係統、網絡安全、物流運輸、戰爭醫療、威脅和安全監測以及戰鬥模擬和訓練。
使用多層膠囊網絡的國防軍事目標檢測
專知會員服務
4+閱讀 · 今天7:40
機器學習自動文本分類
AI前線
22+閱讀 · 2018年2月4日
國家自然科學基金
0+閱讀 · 2014年12月31日
國家自然科學基金
0+閱讀 · 2013年12月31日
國家自然科學基金
0+閱讀 · 2013年12月31日
國家自然科學基金
0+閱讀 · 2012年12月31日
國家自然科學基金
0+閱讀 · 2012年12月31日
國家自然科學基金
0+閱讀 · 2012年12月31日
國家自然科學基金
7+閱讀 · 2009年12月31日
Arxiv
0+閱讀 · 8月9日
Arxiv
13+閱讀 · 2020年9月1日
Arxiv
13+閱讀 · 2020年5月20日
VIP會員
相關基金
國家自然科學基金
0+閱讀 · 2014年12月31日
國家自然科學基金
0+閱讀 · 2013年12月31日
國家自然科學基金
0+閱讀 · 2013年12月31日
國家自然科學基金
0+閱讀 · 2012年12月31日
國家自然科學基金
0+閱讀 · 2012年12月31日
國家自然科學基金
0+閱讀 · 2012年12月31日
國家自然科學基金
7+閱讀 · 2009年12月31日
微信掃碼谘詢專知VIP會員
Top