排序是計算機內經常進行的一種操作,其目的是將一組“無序”的記錄序列調整為“有序”的記錄序列。分內部排序和外部排序。若整個排序過程不需要訪問外存便能完成,則稱此類排序問題為內部排序。反之,若參加排序的記錄數量很大,整個序列的排序過程不可能在內存中完成,則稱此類排序問題為外部排序。內部排序的過程是一個逐步擴大記錄的有序序列長度的過程。

VIP內容

地址:

https://arxiv.org/abs/2002.12312

在這篇論文中,我們討論了協同過濾和排名的一些最新進展。第一章簡要介紹了協同過濾與排名的曆史與現狀;第二章首先討論了圖信息的點態協同過濾問題,以及我們提出的新方法如何對深度圖信息進行編碼,這有助於現有的四種圖信息協同過濾算法;第三章介紹了協同排序的配對方法,以及如何將算法加速到接近線性的時間複雜度;第4章是關於新的列表方法的協作排名,以及如何更好的選擇列表方法的損失顯式和隱式反饋超過點和兩兩損失;第5章是關於我們提出的新的正則化技術——隨機共享嵌入(SSE),以及它在6個不同的任務(包括推薦和自然語言處理)中的理論有效性和經驗有效性;第6章是我們如何在SSE的幫助下,為最先進的序列推薦模型引入個性化,這對於防止我們的個性化模型對訓練數據的過度擬合起到了重要的作用;第7章,我們總結了目前所取得的成果,並展望了未來的發展方向;第八章是所有章節的附錄。

成為VIP會員查看完整內容
0
21
2

最新論文

The spread of online reviews and opinions and its growing influence on people's behavior and decisions, boosted the interest to extract meaningful information from this data deluge. Hence, crowdsourced ratings of products and services gained a critical role in business and governments. Current state-of-the-art solutions rank the items with an average of the ratings expressed for an item, with a consequent lack of personalization for the users, and the exposure to attacks and spamming/spurious users. Using these ratings to group users with similar preferences might be useful to present users with items that reflect their preferences and overcome those vulnerabilities. In this paper, we propose a new reputation-based ranking system, utilizing multipartite rating subnetworks, which clusters users by their similarities using three measures, two of them based on Kolmogorov complexity. We also study its resistance to bribery and how to design optimal bribing strategies. Our system is novel in that it reflects the diversity of preferences by (possibly) assigning distinct rankings to the same item, for different groups of users. We prove the convergence and efficiency of the system. By testing it on synthetic and real data, we see that it copes better with spamming/spurious users, being more robust to attacks than state-of-the-art approaches. Also, by clustering users, the effect of bribery in the proposed multipartite ranking system is dimmed, comparing to the bipartite case.

0
2
0
下載
預覽
Top