圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關係。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦係統、問答係統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

圖神經網絡(Graph Neural Networks, GNN)專知薈萃

入門

綜述

  • A Comprehensive Survey on Graph Neural Networks. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu. 2019
    https://arxiv.org/pdf/190-00596.pdf
  • Relational inductive biases, deep learning, and graph networks. Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu. 2018.
    https://arxiv.org/pdf/1806.0126-pdf
  • Attention models in graphs. John Boaz Lee, Ryan A. Rossi, Sungchul Kim, Nesreen K. Ahmed, Eunyee Koh. 2018.
    https://arxiv.org/pdf/1807.07984.pdf
  • Deep learning on graphs: A survey. Ziwei Zhang, Peng Cui and Wenwu Zhu. 2018.
    https://arxiv.org/pdf/1812.04202.pdf
  • Graph Neural Networks: A Review of Methods and Applications. Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun. 2018
    https://arxiv.org/pdf/1812.08434.pdf
  • Geometric deep learning: going beyond euclidean data. Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst. 2016.
    https://arxiv.org/pdf/161-08097.pdf

進階論文

Recurrent Graph Neural Networks

Convolutional Graph Neural Networks

Spectral and Spatial

Architecture

Attention Mechanisms

Convolution

Training Methods

Pooling

Bayesian

Analysis

GAE

Spatial-Temporal Graph Neural Networks

應用

Physics

Knowledge Graph

Recommender Systems

  • STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems. Jiani Zhang, Xingjian Shi, Shenglin Zhao, Irwin King. IJCAI 2019.
    https://arxiv.org/pdf/1905.13129.pdf

  • Binarized Collaborative Filtering with Distilling Graph Convolutional Networks. Haoyu Wang, Defu Lian, Yong Ge. IJCAI 2019.
    https://arxiv.org/pdf/1906.01829.pdf

  • Graph Contextualized Self-Attention Network for Session-based Recommendation. Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Victor S. Sheng, Jiajie Xu, Fuzhen Zhuang, Junhua Fang, Xiaofang Zhou. IJCAI 2019.
    https://www.ijcai.org/proceedings/2019/0547.pdf

  • Session-based Recommendation with Graph Neural Networks. Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, Tieniu Tan. AAAI 2019.
    https://arxiv.org/pdf/181-00855.pdf

  • Geometric Hawkes Processes with Graph Convolutional Recurrent Neural Networks. Jin Shang, Mingxuan Sun. AAAI 2019.
    https://jshang2.github.io/pubs/geo.pdf

  • Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems. Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, Zhongyuan Wang. KDD 2019.
    https://arxiv.org/pdf/1905.04413

  • Exact-K Recommendation via Maximal Clique Optimization. Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, Kenny Q. Zhu. KDD 2019.
    https://arxiv.org/pdf/1905.07089

  • KGAT: Knowledge Graph Attention Network for Recommendation. Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, Tat-Seng Chua. KDD 2019.
    https://arxiv.org/pdf/1905.07854

  • Knowledge Graph Convolutional Networks for Recommender Systems. Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, Minyi Guo. WWW 2019.
    https://arxiv.org/pdf/1904.12575.pdf

  • Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, Guihai Chen. WWW 2019.
    https://arxiv.org/pdf/1903.10433.pdf

  • Graph Neural Networks for Social Recommendation. Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin. WWW 2019.
    https://arxiv.org/pdf/1902.07243.pdf

  • Graph Convolutional Neural Networks for Web-Scale Recommender Systems. Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec. KDD 2018.
    https://arxiv.org/abs/1806.01973

  • Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks. Federico Monti, Michael M. Bronstein, Xavier Bresson. NIPS 2017.
    https://arxiv.org/abs/1704.06803

  • Graph Convolutional Matrix Completion. Rianne van den Berg, Thomas N. Kipf, Max Welling. 2017.
    https://arxiv.org/abs/1706.02263

Computer Vision

Natural Language Processing

Others

Tutorial

視頻教程

代碼

領域專家

VIP內容

鏈接預測是圖的一項非常基礎的任務。在傳統路徑學習方法的啟發下,本文提出了一種通用的、靈活的基於路徑的鏈接預測表示學習框架。具體來說,我們將節點對的表示定義為所有路徑表示的廣義和,每個路徑表示都是路徑中各邊表示的廣義乘積。受求解最短路徑問題的Bellman-Ford算法的啟發,我們證明了所提出的路徑公式可以被廣義Bellman-Ford算法有效地求解。為了進一步提高路徑表示的能力,我們提出了神經BellmanFord網絡(NBFNet),這是一個通用的圖神經網絡框架,用於解決廣義Bellman-Ford算法中使用學習算子的路徑表示。NBFNet將廣義Bellman-Ford算法參數化,采用3個神經單元,分別對應邊界條件、乘法算子和求和算子。NBFNet是非常通用的,涵蓋了許多傳統的基於路徑的方法,並且可以應用於同構圖和多關係圖(例如,知識圖)在轉換和歸納設置。在同構圖和知識圖譜上的實驗表明,所提出的NBFNet在轉導和歸納設置方麵都大大優於現有方法,取得了最新的研究結果。

//www.webtourguide.com/paper/15b186a8fcbae87c07eef96f6692c300

成為VIP會員查看完整內容
0
11
0

最新論文

Few-shot learning presents a challenging paradigm for training discriminative models on a few training samples representing the target classes to discriminate. However, classification methods based on deep learning are ill-suited for such learning as they need large amounts of training data --let alone one-shot learning. Recently, graph neural networks (GNNs) have been introduced to the field of network neuroscience, where the brain connectivity is encoded in a graph. However, with scarce neuroimaging datasets particularly for rare diseases and low-resource clinical facilities, such data-devouring architectures might fail in learning the target task. In this paper, we take a very different approach in training GNNs, where we aim to learn with one sample and achieve the best performance --a formidable challenge to tackle. Specifically, we present the first one-shot paradigm where a GNN is trained on a single population-driven template --namely a connectional brain template (CBT). A CBT is a compact representation of a population of brain graphs capturing the unique connectivity patterns shared across individuals. It is analogous to brain image atlases for neuroimaging datasets. Using a one-representative CBT as a training sample, we alleviate the training load of GNN models while boosting their performance across a variety of classification and regression tasks. We demonstrate that our method significantly outperformed benchmark one-shot learning methods with downstream classification and time-dependent brain graph data forecasting tasks while competing with the train-on-all conventional training strategy. Our source code can be found at https://github.com/basiralab/one-representative-shot-learning.

0
0
0
下載
預覽
Top