推薦係統,是指根據用戶的習慣、偏好或興趣,從不斷到來的大規模信息中識別滿足用戶興趣的信息的過程。推薦推薦任務中的信息往往稱為物品(Item)。根據具體應用背景的不同,這些物品可以是新聞、電影、音樂、廣告、商品等各種對象。推薦係統利用電子商務網站向客戶提供商品信息和建議,幫助用戶決定應該購買什麼產品,模擬銷售人員幫助客戶完成購買過程。個性化推薦是根據用戶的興趣特點和購買行為,向用戶推薦用戶感興趣的信息和商品。隨著電子商務規模的不斷擴大,商品個數和種類快速增長,顧客需要花費大量的時間才能找到自己想買的商品。這種瀏覽大量無關的信息和產品過程無疑會使淹沒在信息過載問題中的消費者不斷流失。為了解決這些問題,個性化推薦係統應運而生。個性化推薦係統是建立在海量數據挖掘基礎上的一種高級商務智能平台,以幫助電子商務網站為其顧客購物提供完全個性化的決策支持和信息服務。

知識薈萃

入門學習

  1. 探索推薦引擎內部的秘密,第 1 部分 推薦引擎初探 IBM developerWorks

  2. 探索推薦引擎內部的秘密,第 2 部分 深入推薦引擎相關算法 - 協同過濾

  3. 探索推薦引擎內部的秘密,第 3 部分 深入推薦引擎相關算法 - 聚類

  4. 項亮《推薦係統實踐》筆記(1,2)

  5. 推薦算法綜述(一,二,三,四,五)

  6. 推薦係統,第一部分 方法和算法簡介 第 2 部分 開源引擎簡介

  7. 深度學習在推薦係統中的一些應用

  8. 《紐約時報》如何打造新一代推薦係統

  9. 深度學習在推薦算法上的應用進展

  10. 如何學習推薦係統? by 知乎

  11. 了解關於係統推薦算法的知識,有什麼好的資源推薦? by 知乎

  12. 項亮_推薦係統_博士論文.pdf

  13. 微信公眾號:resyschina 中國最專業的個性化推薦技術與產品社區。

  14. 餓了麼推薦係統:從0到1

  15. 【直播回顧】21天搭建推薦係統:實現“千人千麵”個性化推薦(含視頻)

  16. 這本書收錄了推薦係統很多經典論文,話題涵蓋非常廣,第三章專門講內容推薦的基本原理,第九章是一個具體的基於內容推薦係統的案例。 - 2010

    https://book.douban.com/subject/3695850/

  17. Deep Learning Meets Recommendation Systems by Wann-Jiun.https://blog.nycdatascience.com/student-works/deep-learning-meets-recommendation-systems/

  18. Machine Learning for Recommender systems Source:https://medium.com/recombee-blog/machine-learning-for-recommender-systems-part-1-algorithms-evaluation-and-cold-start-6f696683d0ed

  19. Check out our new client-side integration support and deploy personalized recommendations faster

    https://medium.com/recombee-blog/check-out-our-new-client-side-integration-support-and-deploy-personalized-recommendations-faster-7dd7bf5b6241

  20. Practical Recommender Systems by Kim Falk (Manning Publications). Chapter 1

    https://www.manning.com/books/practical-recommender-systems

  21. Recommender Systems Handbook by Ricci, F. et al.

    https://dl.acm.org/citation.cfm?id=1941884

綜述

  1. Deep Learning based Recommender System: A Survey and New Perspectives 用於推薦係統的所有深度學習方法

    [https://arxiv.org/pdf/1707.07435.pdf]

  2. Toward the next generation of recommender systems:A survey of the state-of-the-art and possiblie extensions (2005), Adomavicius G, Tuzhilin A.http://people.stern.nyu.edu/atuzhili/pdf/TKDE-Paper-as-Printed.pdf

  3. Recommender systems: an introduction (2011), Zanker M, Felfernig A, Friedrich G.

    http://recommenderbook.net/media/szeged.pdf

  4. 推薦係統調研報告及綜述-張永鋒

    http://yongfeng.me/attach/rs-survey-zhang.pdf

  5. 綜述論文合集-hongleizhang 2002-2019

    https://github.com/hongleizhang/RSPapers/tree/master/01-Surveys

  6. 知識圖譜的推薦係統綜述

    http://html.rhhz.net/tis/html/201805001.htm

  7. Recommender-System論文、學習資料以及業界分享

    https://github.com/zhaozhiyong19890102/Recommender-System

  8. RecommenderSystem-paper/Survey - daicoolb

    https://github.com/daicoolb/RecommenderSystem-Paper/tree/master/Survey

進階文章

1997

  1. Recommender system (1997), P Resnick, HR Varian.

1998

  1. Empirical analysis of predictive algorithms for collaborative filtering (1998), John S Breese, David Heckerman, Carl M Kadie.
    [http://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-12.pdf]
  2. Clustering methods for collaborative filtering (1998), Ungar, L. H., D. P. Foster.
    [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.44.7783&rep=rep1&type=pdf]

1999

  1. A bayesian model for collaborative filtering (1999),Chien Y H, George E I.
    [http://www-stat.wharton.upenn.edu/~edgeorge/Research_papers/Bcollab.pdf]
  2. Using probabilistic relational models for collaborative filtering (1999), Lise Getoor, Mehran Sahami [http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=52BCC5212B0117CBB8BA48A1D8230E30?doi=10.1.1.40.4507&rep=rep1&type=pdf]

2001

  1. Item-based Collaborative Filtering Recommendation Algorithms (2001), Badrul M Sarwar, George Karypis, Joseph A Konstan, John Riedl. [http://www10.org/cdrom/papers/pdf/p519.pdf]

2002

  1. Hybrid recommender systems: Survey and experiments (2002), Burke R. [https://www.researchgate.net/profile/Robin_Burke/publication/263377228_Hybrid_Recommender_Systems_Survey_and_Experiments/links/5464ddc20cf2f5eb17ff3149.pdf]

2003

  1. Amazon Recommendations Item-to-Item Collaborative Filtering (2003), G Linden, B Smith, et al.
    [http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf]

2004

  1. A maximum entropy approach for collaborative filtering (2004), Browning J, Miller D J.
    [http://www.yaroslavvb.com/papers/browning-maximum.pdf]
  2. Supporting user query relaxation in a recommender system (2004),Mirzadeh N, Ricci F, Bansal M. [https://www.researchgate.net/profile/Francesco_Ricci5/publication/221017551_Supporting_User_Query_Relaxation_in_a_Recommender_System/links/0deec524dcde30df0d000000.pdf]

2005

  1. Case-based recommender systems: a unifying view.Intelligent Techniques for Web Personalization (2005),Lorenzi F, Ricci F. [www.inf.unibz.it/~ricci//papers/LorenziRicciCameraReady.pdf]
  2. SVD-based collaborative filtering with privacy (2005), Polat H, Du W.
    [http://www.cis.syr.edu/~wedu/Research/paper/sac2004.pdf]

2007

  1. Improving regularized singular value decomposition for collaborative filtering (2007), A Paterek.
    [http://www.mimuw.edu.pl/~paterek/ap_kdd.pdf]
  2. Predicting Clicks Estimating the click-through rate for new ads (2007),M Richardson, E Dominowska.
    [http://research.microsoft.com/en-us/um/people/mattri/papers/www2007/predictingclicks.pdf]
  3. Restricted Boltzmann Machines for Collaborative Filtering (2007),R Salakhutdinov, A Mnih, G Hinton. [http://machinelearning.wustl.edu/mlpapers/paper_files/icml2007_SalakhutdinovMH07.pdf]

2008

  1. Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo (2008),R Salakhutdinov, et al.
    [http://www.cs.utoronto.ca/~amnih/papers/bpmf.pdf]
  2. Factorization Meets the Neighborhood- a Multifaceted Collaborative Filtering Model (2008),Y Koren. [http://www.academia.edu/download/35945687/Factorization_meets_the_neighborhood_a_multifaceted_collaborative_filtering_model.pdf]

2009

  1. Utility-based repair of inconsistent requirements (2009), Felfernig A, Mairitsch M, Mandl M, et al.
    [http://link.springer.com/content/pdf/10.1007/978-3-642-02568-6_17.pdf]
  2. Bayesian Personalized Ranking from Implicit Feedback (2009), S Rendle, C Freudenthaler, Z Gantner.
    [https://arxiv.org/ftp/arxiv/papers/1205/1205.2618.pdf]
  3. Fast computation of query relaxations for knowledge-based recommenders (2009),Jannach D.
    [http://ls13-www.cs.tu-dortmund.de/homepage/publications/jannach/Journal_AICOM09.pdf]
  4. A hybrid approach to item recommendation in folksonomies (2009), Wetzker R, Umbrath W, Said A.
    [http://www.dai-labor.de/fileadmin/Files/Publikationen/Buchdatei/wetzker_folksonomyrecommendation_esair2009_final.pdf]

2010

  1. Click-Through Rate Estimation for Rare Events in Online Advertising (2010),X Wang, W Li, Y Cui, R Zhang.
    [http://www.cs.cmu.edu/~./xuerui/papers/ctr.pdf]
  2. Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft's Bing Search Engine (2010), T Graepel, JQ Candela.
    [http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_GraepelCBH10.pdf]
  3. Rendle S, Schmidt-Thieme L. Pairwise interaction tensor factorization for personalized tag recommendation[C]//Proceedings of the third ACM international conference on Web search and data mining. ACM, 2010: 81-90.
    [https://www.ismll.uni-hildesheim.de/pub/pdfs/Rendle2010-PITF.pdf]
  4. Factor in the Neighbors- Scalable and Accurate Collaborative Filtering (2010), Y Koren.
    [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.4158&rep=rep1&type=pdf]

2011

  1. Tag-aware recommender systems: a state-of-the-art survey (2011), Zhang Z K, Zhou T, Zhang Y C.
    [http://arxiv.org/pdf/1202.5820.pdf]
  2. Feature-Based Matrix Factorization (2011), T Chen, Z Zheng, Q Lu, W Zhang, Y Yu.
    [https://arxiv.org/pdf/1109.2271.pdf?ref=theredish.com/web)]

2012

  1. A Two-Stage Ensemble of Diverse Models for Advertisement Ranking in KDD Cup 2012 (2012),KW Wu, CS Ferng, CH Ho, AC Liang, CH Huang. [http://ntur.lib.ntu.edu.tw/retrieve/188498/03.pdf]
  2. Combining Factorization Model and Additive Forest for Collaborative Followee Recommendation (2012), T Chen, L Tang, Q Liu, D Yang, S Xie, X Cao, C Wu.
    [http://curtis.ml.cmu.edu/w/courses/images/4/4e/AdditiveForestChen.pdf]
  3. Rendle, Steffen. "Factorization machines with libfm."ACM Transactions on Intelligent Systems and Technology (TIST)3.3 (2012): 57. [http://www.csie.ntu.edu.tw/~b97053/paper/Factorization%20Machines%20with%20libFM.pdf]
  4. Factorization Machines with libFM (2012),S Rendle.
    [http://www.csie.ntu.edu.tw/~b97053/paper/Factorization%20Machines%20with%20libFM.pdf]
  5. Rendle S. Factorization machines with libfm[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2012, 3(3): 57. [http://www.csie.ntu.edu.tw/~b97053/paper/Factorization%20Machines%20with%20libFM.pdf]
  6. Ensemble of Collaborative Filtering and Feature Engineered Models for Click Through Rate Prediction (2012), M Jahrer, A Toscher, JY Lee, J Deng.
    [https://pdfs.semanticscholar.org/eeb9/34178ea9320c77852eb89633e14277da41d8.pdf]

2013

  1. Van den Oord A, Dieleman S, Schrauwen B. Deep content-based music recommendation[C]//Advances in neural information processing systems. 2013: 2643-2651.
    [http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf]
  2. Deep content-based music recommendation (2013), A Van den Oord, S Dieleman.
    [http://papers.nips.cc/paper/5004-deep-content-based-music-recommendation.pdf]
  3. A Hybrid Approach with Collaborative Filtering for Recommender Systems (2013), G Badaro, H Hajj, et al.
    [http://staff.aub.edu.lb/~we07/Publications/A%20Hybrid%20Approach%20with%20Collaborative%20Filtering%20for%20Recommender%20Systems.pdf]

2014

  1. Zhang T, Zhang T, Zhang T, et al. Gradient boosting factorization machines[C]// ACM Conference on Recommender Systems. ACM, 2014:265-272.
    [http://pdfs.semanticscholar.org/cd57/9e1e9cc350c3f7746e6ae6911a97e21ba27c.pdf]
  2. Practical Lessons from Predicting Clicks on Ads at Facebook(2014), X He, J Pan, O Jin, T Xu, B Liu, T Xu, Y Shi.
    [http://quinonero.net/Publications/predicting-clicks-facebook.pdf]

2015

  1. Simple and scalable response prediction for display advertising (2015),O Chapelle, E Manavoglu, R Rosales. [http://people.csail.mit.edu/romer/papers/TISTRespPredAds.pdf]
  2. AutoRec- Autoencoders Meet Collaborative Filtering (2015), Suvash Sedhain, Aditya Krishna Menon, et al.
    [http://users.cecs.anu.edu.au/~u5098633/papers/www15.pdf]
  3. Collaborative Deep Learning for Recommender Systems (2015), Hao Wang, N Wang, Dityan Yeung.
    [http://www.wanghao.in/mis/CDL.pdf]

2016

  1. Juan Y, Zhuang Y, Chin W S, et al. Field-aware factorization machines for CTR prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016: 43-50.
    [http://ntucsu.csie.ntu.edu.tw/~cjlin/papers/ffm.pdf]
  2. Zhang W, Du T, Wang J, et al. Deep Learning over Multi-field Categorical Data[C]. european conference on information retrieval, 2016: 45-57. [https://arxiv.org/abs/1601.02376]
  3. Factorization Meets the Item Embedding- Regularizing Matrix Factorization with Item Co-occurrence (2016), D Liang, J Altosaar, L Charlin, DM Blei.
    [https://pdfs.semanticscholar.org/f14f/c33e0a351dff4f4e02510276604a93d1b9fa.pdf]
  4. F2M Scalable Field-Aware Factorization Machines (2016),C Ma, Y Liao, Y Wang, Z Xiao. [https://pdfs.semanticscholar.org/bb29/9887ba700300757de7560dc34b48b127cdca.pdf]
  5. Blondel M, Fujino A, Ueda N, et al. Higher-order factorization machines[C]//Advances in Neural Information Processing Systems. 2016: 3351-3359. [http://papers.nips.cc/paper/6144-higher-order-factorization-machines.pdf]
  6. Shan Y, Hoens T R, Jiao J, et al. Deep Crossing: Web-scale modeling without manually crafted combinatorial features[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016: 255-262.
    [www.kdd.org/kdd2016/papers/files/adf0975-shanA.pdf]
  7. Chen J, Sun B, Li H, et al. Deep ctr prediction in display advertising[C]//Proceedings of the 2016 ACM on Multimedia Conference. ACM, 2016: 811-820.
    [https://arxiv.org/pdf/1609.06018.pdf]
  8. Hybrid Collaborative Filtering with Autoencoders (2016), F Strub, J Mary, R Gaudel.
    [https://arxiv.org/pdf/1603.00806)]
  9. Wide & Deep Learning for Recommender Systems (2016),HT Cheng, L Koc, J Harmsen, T Shaked.
    [https://arxiv.org/pdf/1606.07792)]
  10. Deep Neural Networks for YouTube Recommendations (2016), Paul Covington, Jay Adams, Emre Sargin. [https://www.researchgate.net/publication/307573656_Deep_Neural_Networks_for_YouTube_Recommendations)]

2017

  1. He X, Chua T S. Neural Factorization Machines for Sparse Predictive Analytics[J]. 2017:355-364.
    [https://arxiv.org/pdf/1708.05027.pdf]
  2. Ning Y, Shi Y, Hong L, et al. A Gradient-based Adaptive Learning Framework for E icient Personal Recommendation[J]. 2017. [http://people.cs.vt.edu/naren/papers/recs254-ningA.pdf]
  3. Qu Y, Cai H, Ren K, et al. Product-Based Neural Networks for User Response Prediction[C]// IEEE, International Conference on Data Mining. IEEE, 2017:1149-1154.
    [https://arxiv.org/pdf/1611.00144.pdf]
  4. Guo H, Tang R, Ye Y, et al. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction[C]// Twenty-Sixth International Joint Conference on Artificial Intelligence. 2017:1725-1731.
    [https://arxiv.org/pdf/1703.04247.pdf]
  5. Xiao J, Ye H, He X, et al. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks[J]. 2017. [https://ru.arxiv.org/pdf/1708.04617.pdf]
  6. A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems (2017),Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, Fangxi Zhang.
    [http://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14676/13916)]
  7. Collaborative Deep Embedding via Dual Networks (2017), Yilei Xiong, Dahua Lin, et al.
    [https://openreview.net/pdf?id=r1w7Jdqxl)]
  8. Recurrent Recommender Networks (2017), Chao-Yuan Wu.
    [http://delivery.acm.org/10.1145/3020000/3018689/p495-wu.pdf?ip=221.226.125.130&id=3018689&acc=OA&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E5945DC2EABF3343C&CFID=995126498&CFTOKEN=96329132&acm=1508034746_8da751768f4ee19af912968914bbbaa6)_]

2018

2019

Tutorial

  1. Tutorial: Recommender Systems IJCAI 2013

    [http://ijcai13.org/files/tutorial_slides/td3.pdf]

  2. Tutorial: Context In Recommender Systems 2016

    [https://www.slideshare.net/irecsys/tutorial-context-in-recommender-systems]

  3. 融合用戶上下文的個性化推薦 張敏, 清華大學

    [http://www.cips-smp.org/smp2017/public/workshop-recommendation.html]

  4. 今日頭條的人工智能技術實踐 曹歡歡博士

    [http://www.cips-smp.org/smp2017/public/workshop-recommendation.html]

  5. 基於循環神經網絡的序列推薦 吳書

    [http://www.cips-smp.org/smp2017/public/workshop-recommendation.html]

  6. 冷啟動推薦的思考與進展 趙鑫

    [http://www.cips-smp.org/smp2017/public/workshop-recommendation.html]

  7. Recommender Systems: A Brief Introduction 中科大 劉淇 [http://home.ustc.edu.cn/~zengxy/dm/courseware/A%20brief%20introduction%20to%20RecSys.pdf]

  8. Deep Learning for Recommender Systems by Balázs Hidasi.RecSys Summer School, 21-25 August, 2017, Bozen-Bolzano.

https://www.slideshare.net/balazshidasi/deep-learning-in-recommender-systems-recsys-summer-school-2017

  1. Deep Learning for Recommender Systems by Alexandros Karatzoglou and Balázs Hidasi. RecSys2017 Tutorial.

    https://www.slideshare.net/kerveros99/deep-learning-for-recommender-systems-recsys2017-tutorial

  2. Introduction to recommender Systems by Miguel González-Fierro.

    https://github.com/miguelgfierro/sciblog_support/blob/master/Intro_to_Recommendation_Systems/Intro_Recommender.ipynb

  3. Collaborative Filtering using a RBM by Big Data University.

    https://github.com/santipuch590/deeplearning-tf/blob/master/dl_tf_BDU/4.RBM/ML0120EN-4.2-Review-CollaborativeFilteringwithRBM.ipynb

  4. Building a Recommendation System in TensorFlow: Overview.

    https://cloud.google.com/solutions/machine-learning/recommendation-system-tensorflow-overview

視頻教程

  1. 如何設計一個推薦係統

    [https://www.youtube.com/watch?v=MZkxusQ6GNo]

  2. Recommender Systems | Coursera [https://www.coursera.org/specializations/recomender-systems]

  3. 大數據推薦係統算法視頻教程

    https://pan.baidu.com/s/1U89CR_ZH_1JzsPOOKLbMyQ%E8%AF%B7%E6%B7%BB%E5%8A%A0%E9%93%BE%E6%8E%A5%E6%8F%8F%E8%BF%B0

    提取碼:5ipq

  4. Introduction to Recommender Systems

    https://www.classcentral.com/course/recsys-1029

代碼

  1. annoy - Approximate Nearest Neighbors in Python optimized for memory usage. [https://github.com/spotify/annoy]

  2. fastFM - A library for Factorization Machines. [https://github.com/ibayer/fastFM]

  3. implicit - A fast Python implementation of collaborative filtering for implicit datasets. [https://github.com/benfred/implicit]

  4. libffm- A library for Field-aware Factorization Machine (FFM). [https://github.com/guestwalk/libffm]

  5. LightFM - A Python implementation of a number of popular recommendation algorithms.

    [https://github.com/lyst/lightfm]

  6. surprise - A scikit for building and analyzing recommender systems. [http://surpriselib.com]

  7. Crab- a python recommender based on the popular packages NumPy, SciPy, matplotlib. The main repository seems to be abandoned.

    [http://muricoca.github.io/crab/]

  8. RecQ

    https://github.com/hongleizhang/RecQ

  9. Recommender System Suits: An open source toolkit for recommender system

    https://github.com/hongleizhang/RSAlgorithms

  10. Surprise- is a Python scikit building and analyzing recommender systems.

    https://github.com/NicolasHug/Surprise

  11. SpotLight- Spotlight uses PyTorch to build both deep and shallow recommender models.

    https://github.com/maciejkula/spotlight

  12. Python-Recsys: A python library for implementing a recommender system.

    https://github.com/ocelma/python-recsys

  13. LibRec- A java library for the state-of-the-art algorithms in recommeder sytem.

    https://www.librec.net/

  14. SparkMovieLens- A scalable on-line movie recommender using Spark and Flask.

    https://github.com/jadianes/spark-movie-lens

  15. Elasticsearch- Building a Recommender with Apache Spark & Elasticsearch

    https://github.com/IBM/elasticsearch-spark-recommender

相關會議

  • KDDthe community for data mining, data science and analytics.
  • AAAIpromotes research in, and responsible use of, artificial intelligence.
  • WWWprovides the world a premier forum for discussion and debate about the evolution of the Web, the standardization of its associated technologies, and the impact of those technologies on society and culture.
  • MMis the premier international conference in the area of multimedia within the field of computer science. Multimedia research focuses on integration of the multiple perspectives offered by different digital modalities including images, text, video, music, sensor data, spoken audio.
  • NIPShas a responsibility to provide an inclusive and welcoming environment for everyone in the fields of AI and machine learning.
  • ICMLis the leading international machine learning conference and is supported by the International Machine Learning Society (IMLS).
  • CIKMprovides an international forum for presentation and discussion of research on information and knowledge management, as well as recent advances on data and knowledge bases.
  • SIGIRis the Association for Computing Machinery’s Special Interest Group on Information Retrieval. Since 1963, we have promoted research, development and education in the area of search and other information access technologies.
  • Recsysis the most famous conference in recommender system.
  • WSDM(pronounced "wisdom") is one of the the premier conferences on web inspired research involving search and data mining.
  • ICDMdraws researchers and application developers from a wide range of data mining related areas such as statistics, machine learning, pattern recognition, databases and data warehousing, data visualization, knowledge-based systems, and high performance computing.

領域專家

  1. 陳恩紅

    從中國科技術大學教授,多媒體計算與通信教育部-微軟重點實驗室副主任。機器學習與數據挖掘、網絡信息處理領的專家,相關研究獲得國家傑出青年科學基金、教育部新世紀優秀人才計劃等資助。曾擔任KD、AAAI2012、ICDM、PAKDD、SDM3等30餘個國際學術會議的程序委員。CCF理事、人工智能與模式識別專委會委員、數據庫專委會委員、大數據專家委員會委員,中國人工智能學會理事,知識工程與分布智能專業委員會副主任委員、IEEE高級會員。 [http://staff.ustc.edu.cn/~cheneh/]

  2. 唐傑

    清華大學計算機係副教授、博士生導師。主要研究興趣包括:社會網絡分析、數據挖掘、機器學習和語義Web。研發了研究者社會網絡ArnetMiner係統,吸引全球220個國家和地區432萬獨立IP的訪問。榮獲首屆國家自然科學基金優秀青年基金,2012中國計算機學會青年科學家獎、2010年清華大學學術新人獎(清華大學40歲以下教師學術最高獎)、2011年北京市科技新星、IBM全球創新教師獎以及KDD’12 Best Poster Award、PKDD’11 Best Student Paper Runnerup和JCDL’12 Best Student Paper Nomination。 [http://keg.cs.tsinghua.edu.cn/jietang/]

  3. 張敏

    清華大學計算機科學與技術係副教授,博士生導師。主要研究領域為信息檢索、個性化推薦、用戶畫像與建模、用戶行為分析。現任智能技術與係統國家重點實驗中心實驗室科研副主任、網絡與媒體技術教育部-微軟重點實驗室副主任。在重要的國際期刊和會議上發表多篇學術論文,包括JIR、IJCAI、SIGIR、WWW、CIKM、WSDM等,Google Scholar引用約2500次。已授權專利11項。擔任重要國際期刊TOIS編委,國際會議WSDM 2017和AIRS2016程序委員會主席,SIGIR 2018 short paper主席, WWW,SIGIR,CIKM,WSDM等重要國際會議的領域主席或資深審稿人。現任中國中文信息學會理事,中國計算機學會高級會員。http://www.thuir.org/group/~mzhang/~

  4. 謝幸

    微軟亞洲研究院首席研究院,中國科學技術大學簡直博士生導師。研究方向為數據挖掘、社會計算、普適計算。謝幸博士於2001年7月加入微軟亞洲研究院,現任首席研究員,中國科技大學兼職博士生導師,以及微軟-中科大聯合實驗室主任。他1996年畢業於中國科技大學少年班,並於2001年在中國科技大學獲得博士學位,師從陳國良院士。目前,他的團隊在數據挖掘、社會計算和普適計算等領域展開創新性的研究。他在國際會議和學術期刊上發表了250餘篇學術論文,共被引用20000餘次,H指數63,1999年獲首屆微軟學者獎,多次在KDD、ICDM等頂級會議上獲最佳論文獎,並被邀請在HHME 2018, ASONAM 2017、Mobiquitous 2016、SocInfo 2015、W2GIS 2011等會議做大會主題報告。他是ACM、IEEE高級會員和計算機學會傑出會員,多次擔任頂級國際會議程序委員會委員和領域主席等職位。他是ACM Transactions on Social Computing, ACM Transactions on Intelligent Systems and Technology、Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT)、Springer GeoInformatica、Elsevier Pervasive and Mobile Computing、CCF Transactions on Pervasive Computing and Interaction等雜誌編委。他參與創立了ACM SIGSPATIAL中國分會,並曾擔任ACM UbiComp 2011、PCC 2012、IEEE UIC 2015、以及SMP 2017等大會程序委員會共同主席。

    個人主頁:http://dsxt.ustc.edu.cn/zj_js.asp?zzid=1074

    https://www.microsoft.com/en-us/research/people/xingx/

  5. 張永鋒

    Rutgers大學計算機係助理教授。最近的研究集中在機器學習和數據挖掘、推薦和搜索係統、知識圖和計算經濟學的交叉上,包括1)解釋機器學習及其在決策支持係統中的應用--開發可解釋的機器學習理論和用於決策支持係統的算法,例如個性化推薦和搜索;2)基於神經網絡建模和自然語言處理的對話搜索、推薦和QA算法;3)網絡經濟學---應用和分析基於Web的應用中的經濟理論,如推薦、搜索和共享經濟。我的團隊也對"個性化X"感興趣,包括個性化推薦、搜索、教育、聊天機器人等。

    個人主頁:http://yongfeng.me/

  6. 何向南

    中國科學技術大學信息與技術學院、大數據學院教授。研究方向是信息檢索、數據挖掘和多媒體分析。共發表會議期刊論文六十餘篇,如SIGIR、WWW、KDD和MM,以及包括TKDE、TOIS和TMM在內的期刊。其推薦係統方麵的工作獲得了WWW 2018和ACM SIGIR 2016年度最佳論文獎的榮譽提名。此外還擔任過幾個頂級會議的高級PC成員,包括SIGIR、WWW、KDD和MM等,以及TKDE、TOIS和TMM等期刊的審稿人。

    個人主頁:http://staff.ustc.edu.cn/~hexn/

  7. 劉淇

    中國科學技術大學副教授、博導。研究方向為數據挖掘、機器學習、推薦係統、社交網絡分析.

    個人主頁:http://staff.ustc.edu.cn/~qiliuql/

  8. 李晨亮

    武漢大學副教授。武大珞珈青年學者,大數據分析與人工智能研究所(副所長)。研究方向為信息檢索、自然語言處理、統計學習、數據挖掘、社交媒體分析和挖掘。

    個人主頁:http://www.lichenliang.net/zh.html

  9. 趙鑫

北京大學博士,中國人民大學信息學院教師。研究領域為社交數據挖掘和自然語言處理領域,共發表CCF A/B、SCI論文40餘篇, Google Scholar引用1500餘次。博士期間的研究工作主要集中在社交媒體用戶話題興趣建模研究,同時獲得穀歌中國博士獎研金和微軟學者稱號。其中ECIR’11提出的Twitter-LDA成為短文本主題建模重要基準比較方法之一,單文引用次數近700次。目前主要關注與社會經濟緊密相關的商業大數據挖掘,研究用戶意圖檢測、用戶畫像以及推薦係統,將理論技術運用到實踐之中,承擔國家自然科學青年基金、北京市自然科學青年基金,入選第二屆CCF“青年人才托舉計劃”。擔任多個國際頂級期刊和學術會議評審、AIRS 2016出版主席、SMP 2017領域主席以及NLPCC 2017領域主席。 [http://playbigdata.com/batmanfly/]

  1. 劉奕群

    清華大學計算機科學與技術係副教授。主要研究興趣集中在網絡搜索引擎技術,尤其是基於用戶行為分析方法改進搜索引擎性能這一研究領域。麵對海量繁雜的網絡數據與千差萬別的用戶行為,傳統的信息檢索、機器學習、自然語言處理技術在搜索引擎係統中的應用麵臨著極大的挑戰。為應對這一挑戰,利用搜索引擎海量規模的用戶行為數據信息,發揮“用戶群體智慧”的作用是非常必要的。基於這一思路,其在國家自然科學基金重點項目、青年項目、教育部博士點基金項目與清華—搜狐搜索技術聯合實驗室的支持下開展了一係列相關研究。

    個人主頁:http://www.thuir.cn/group/~YQLiu/

  2. 唐建

    MILA-QuebecAI研究所和HEC蒙特利爾的助理教授。在此之前是密歇根大學和卡內基梅隆大學的博士後。2014-2016年間在微軟亞研工作。

    個人主頁:https://jian-tang.com/

  3. 穀文棟

    微信公眾號 resyschina , ResysChina發起人

  4. 洪亮劼

    Etsy數據科學主管,前雅虎研究院高級研發經理

  5. Yehuda Koren

    Netflix Prize冠軍隊成員,曾就職雅虎,現就職於穀歌,代表文獻:Matrix Factorization Techniques for Recommender Systems

  6. Jure Leskovec

    斯坦福大學計算機科學係副教授。研究重點是挖掘和建模大型的社會和信息網絡,它們的進化,以及信息的擴散和對它們的影響。調查的問題是由大規模數據、網絡和在線媒體推動的。

    個人主頁:https://cs.stanford.edu/~jure/

  7. Hao Ma

    個人主頁:https://www.haoma.io/

  8. Julian MaAuley

    加利福尼亞大學聖迭戈分校助理教授。研究方向為社交網絡、數據挖掘、推薦係統。

    個人主頁:https://cseweb.ucsd.edu/~jmcauley/

  9. Robin Burke

    科羅拉多大學波德分校教授。主要研究方向為個性化推薦係統。

    個人主頁:https://www.colorado.edu/cmci/people/college-leadership/robin-burke

  10. Bamshad Mobasher

    Bamshad Mobasher博士,芝加哥的計算和數字媒體學院網絡智能中心主任,計算機科學係教授和網絡智能中心主任。他也是德保羅大學數據挖掘和預測分析中心的共同創始人和總監。

    個人主頁:https://www.cdm.depaul.edu/Faculty-and-Staff/Pages/faculty-info.aspx?fid=653


初步版本,水平有限,有錯誤或者不完善的地方,歡迎大家提建議和補充,會一直保持更新,本文為專知內容組原創內容,未經允許不得轉載,如需轉載請發送郵件至fangquanyi@gmail.com或 聯係微信專知小助手(Rancho_Fang)

敬請關注//www.webtourguide.com和關注專知公眾號,獲取第一手AI相關知識

最近更新:2019-12-9

VIP內容

摘要

推薦係統是當今互聯網上最重要的信息服務之一。近年來,圖神經網絡已成為推薦係統的新技術。在這個調研中,我們對基於圖神經網絡的推薦係統的文獻進行了全麵的回顧。我們首先介紹了推薦係統和圖神經網絡的背景和發展曆史。對於推薦係統,一般來說,現有工作的分類分為四個方麵: 階段、場景、目標和應用。對於圖神經網絡,現有的方法包括譜模型和空間模型兩大類。然後討論了將圖神經網絡應用於推薦係統的動機,主要包括高階連通性、數據的結構特性和增強的監督信號。然後我們係統地分析了圖構造、嵌入傳播/聚合、模型優化和計算效率方麵的挑戰。之後,我們首先按照上麵的分類法,全麵概述了基於圖神經網絡的推薦係統的大量現有工作。最後,對該領域存在的問題和未來發展方向進行了討論。我們在https://github.com/tsinghua-fib-lab/GNN-Recommender-Systems中總結了這些有代表性的論文及其代碼庫。推薦係統,是一種以向用戶呈現個性化信息為目標的過濾係統,可以提高用戶體驗,提高企業利潤。作為由現實世界驅動的機器學習的典型應用之一,它是當今工業界和學術界的一個非常熱門的話題。

引言

推薦係統,是一種以向用戶呈現個性化信息為目標的過濾係統,可以提高用戶體驗,提高企業利潤。作為由現實世界驅動的機器學習的典型應用之一,它是當今工業界和學術界的一個非常熱門的話題。

回顧推薦係統的發展曆程,一般可將其分為三個階段:淺層模型[74,125,126]、神經模型[26,48,56]和基於GNN的模型[55,153,188]。最早的推薦模型通過直接計算交互的相似度來捕捉協同過濾(CF)效應。然後,提出了基於模型的CF方法,如矩陣分解(MF)[74]或分解機[125],將推薦作為一個表示學習問題來處理。然而,這些方法麵臨著複雜的用戶行為或數據輸入等關鍵挑戰。為了解決這個問題,我們提出了基於神經網絡的模型[26,48,56]。例如,神經協同過濾(neural collaborative filtering, NCF)被開發用於擴展多層感知器(multi-layer perceptrons, MLP)內積,以提高其能力。同樣,深度因子分解機(DeepFM)[48]將淺層模型因子分解機(FM)[125]與MLP結合。然而,由於這些方法的預測和訓練模式忽略了觀測數據中的高階結構信息,因此仍然存在很大的局限性。例如,NCF的優化目標是預測用戶-物品交互,訓練樣本包括觀察到的正向用戶-物品交互和未觀察到的負向用戶-物品交互。這意味著在對特定用戶進行參數更新時,隻涉及他/她交互的項。

近年來,圖神經網絡的發展為解決推薦係統中的上述問題提供了堅實的基礎和機遇。具體來說,圖神經網絡采用嵌入傳播的方法迭代地聚合鄰域嵌入。通過疊加傳播層,每個節點可以訪問高階鄰居的信息,而不是傳統方法隻訪問一階鄰居的信息。基於GNN的推薦方法以其處理結構化數據和挖掘結構化信息的優勢,已成為推薦係統中最先進的方法。為了將圖神經網絡很好地應用到推薦係統中,有一些關鍵的挑戰需要解決。首先,將推薦係統的數據輸入仔細地構造成圖,節點表示元素,邊表示元素之間的關係。其次,對於具體的任務,需要自適應地設計圖神經網絡中的構件,包括如何傳播和聚合,現有的工作在這方麵探索了各種各樣的選擇,各有優缺點。第三,基於GNN模型的優化,包括優化目標、損失函數、數據采樣等,應與任務要求一致。最後,由於推薦係統對計算成本有嚴格的限製,而且由於GNN的嵌入傳播操作引入了大量的計算,圖神經網絡在推薦係統中的有效部署是另一個關鍵的挑戰。

在本文中,我們旨在提供一個係統和全麵的研究工作,特別是他們如何改進圖神經網絡的推薦和解決相應的挑戰。為了更清晰地理解推薦係統,我們從階段、場景、目標和應用四個方麵對推薦係統的研究進行了分類。我們總結了https://github.com/tsinghua-fib-lab/gnn - recommendation - systems中具有代表性的論文及其代碼庫。 值得一提的是,已有一項基於圖神經網絡的推薦係統的綜述[168]。然而,由於以下原因,它是有限的。首先,它沒有提供廣泛的推薦係統分類。具體來說,它將推薦係統大致分為非序列推薦和序序推薦,但這並不合理。事實上,正如本調研所指出的那樣,序列推薦隻是一個具有特殊輸入和輸出設置的特定推薦場景。第二,它沒有提供足夠的動機和原因,現有的工作利用圖神經網絡推薦係統。而在本次調研中,我們對GNN為什麼可以和應該被用於推薦係統提供了一個全麵的理解,有助於讀者理解這一新的研究領域的地位和價值。第三,它沒有解釋將圖神經網絡應用於推薦的關鍵挑戰以及如何解決這些挑戰,這在本調研中已經充分討論。最後,由於這一領域越來越受歡迎,我們的調研也介紹了許多最近發表的論文[168]沒有涉及。

本次綜述的結構組織如下。在第2節中,我們首先從階段、場景、目標、應用四個方麵介紹了推薦係統的背景,以及圖神經網絡的背景。在第三節中,我們從四個方麵討論了在推薦係統中應用圖神經網絡所麵臨的挑戰。然後我們按照上節的分類,在第4節中詳細闡述了基於圖神經網絡的推薦的代表性方法。在第5節中,我們討論了這一領域中最關鍵的開放問題,並提供了未來方向的想法,在第6節中總結了這個綜述。

成為VIP會員查看完整內容
0
15
0

最新論文

Click-through rate prediction (CTR) and post-click conversion rate prediction (CVR) play key roles across all industrial ranking systems, such as recommendation systems, online advertising, and search engines. Different from the extensive research on CTR, there is much less research on CVR estimation, whose main challenge is extreme data sparsity with one or two orders of magnitude reduction in the number of samples than CTR. People try to solve this problem with the paradigm of multi-task learning with the sufficient samples of CTR, but the typical hard sharing method can't effectively solve this problem, because it is difficult to analyze which parts of network components can be shared and which parts are in conflict, i.e., there is a large inaccuracy with artificially designed neurons sharing. In this paper, we model CVR in a brand-new method by adopting the lottery-ticket-hypothesis-based sparse sharing multi-task learning, which can automatically and flexibly learn which neuron weights to be shared without artificial experience. Experiments on the dataset gathered from traffic logs of Tencent video's recommendation system demonstrate that sparse sharing in the CVR model significantly outperforms competitive methods. Due to the nature of weight sparsity in sparse sharing, it can also significantly reduce computational complexity and memory usage which are very important in the industrial recommendation system.

0
0
0
下載
預覽
Top