VIP內容

書名:Hands-On Machine Learning with Scikit-Learn and TensorFlow

主要內容:

這本書分為兩個部分。

第一部分,機器學習的基礎知識,涵蓋以下主題:

  • 什麼是機器學習?它被試圖用來解決什麼問題?機器學習係統的主要類別和基本概念是什麼?
  • 典型的機器學習項目中的主要步驟。
  • 通過擬合數據來學習模型。
  • 優化成本函數(cost function)。
  • 零、前言
  • 處理,清洗和準備數據。
  • 選擇和設計特征。
  • 使用交叉驗證選擇一個模型並調整超參數。
  • 機器學習的主要挑戰,特別是欠擬合和過擬合(偏差和方差權衡)。
  • 對訓練數據進行降維以對抗 the curse of dimensionality(維度詛咒)
  • 最常見的學習算法:線性和多項式回歸, Logistic 回歸,k-最近鄰,支持向量機,決策 樹,隨機森林和集成方法。

第二部分,神經網絡和深度學習,包括以下主題:

  • 什麼是神經網絡?它們有啥優勢?
  • 使用 TensorFlow 構建和訓練神經網絡。
  • 最重要的神經網絡架構:前饋神經網絡,卷積網絡,遞歸網絡,長期短期記憶網絡 (LSTM)和自動編碼器。
  • 訓練深度神經網絡的技巧。
  • 對於大數據集縮放神經網絡。
  • 強化學習。

第一部分主要基於 scikit-learn ,而第二部分則使用 TensorFlow 。 注意:不要太急於深入學習到核心知識:深度學習無疑是機器學習中最令人興奮的領域之 一,但是你應該首先掌握基礎知識。而且,大多數問題可以用較簡單的技術很好地解決(而 不需要深度學習),比如隨機森林和集成方法(我們會在第一部分進行討論)。如果你擁有 足夠的數據,計算能力和耐心,深度學習是最適合複雜的問題的,如圖像識別,語音識別或 自然語言處理。

成為VIP會員查看完整內容
Hands on Machine Learning with Scikit Learn and TensorFlow - 中文版.pdf
0
26
1

最新論文

In this paper we analyze, evaluate, and improve the performance of training Random Forest (RF) models on modern CPU architectures. An exact, state-of-the-art binary decision tree building algorithm is used as the basis of this study. Firstly, we investigate the trade-offs between using different tree building algorithms, namely breadth-first-search (BFS) and depth-search-first (DFS). We design a novel, dynamic, hybrid BFS-DFS algorithm and demonstrate that it performs better than both BFS and DFS, and is more robust in the presence of workloads with different characteristics. Secondly, we identify CPU performance bottlenecks when generating trees using this approach, and propose optimizations to alleviate them. The proposed hybrid tree building algorithm for RF is implemented in the Snap Machine Learning framework, and speeds up the training of RFs by 7.8x on average when compared to state-of-the-art RF solvers (sklearn, H2O, and xgboost) on a range of datasets, RF configurations, and multi-core CPU architectures.

0
0
0
下載
預覽
Top