我們世界的許多方麵都可以用相互作用的部分組成的係統來理解,從物理中的多對象係統到複雜的社會動力學。讓模型了解這種組合結構對於泛化和數據高效學習非常重要。這就產生了一類稱為圖神經網絡(GNNs)的模型。在這次演講中,我將重點介紹一些最近出現的用於無監督圖表示學習的GNN變體,並介紹我們如何有效地使用GNN來發現交互係統中的關係(Kipf等,ICML 2018)。基於圖的神經關係推理(NRI)模型隻從觀測數據中學習推斷潛在的相互作用,並對相互作用係統的動力學進行建模。示例應用程序包括多對象物理係統建模、運動捕獲數據和多代理運動跟蹤數據,其中NRI可以以非監督的方式恢複可解釋的交互結構,並預測未來許多時間步長的複雜動態。
The study of unsupervised learning can be generally divided into two categories: imitation learning and reinforcement learning. In imitation learning the machine learns by mimicking the behavior of an expert system whereas in reinforcement learning the machine learns via direct environment feedback. Traditional deep reinforcement learning takes a significant time before the machine starts to converge to an optimal policy. This paper proposes Augmented Q-Imitation-Learning, a method by which deep reinforcement learning convergence can be accelerated by applying Q-imitation-learning as the initial training process in traditional Deep Q-learning.