Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
摘要
Transformers 在自然語言處理、計算機視覺和音頻處理等許多人工智能領域都取得了巨大的成功。因此,自然會引起學術界和工業界研究人員的極大興趣。到目前為止,各種各樣的Transformer變種(即X-formers)已經被提出,但是,關於這些Transformer器變種的係統和全麵的文獻綜述仍然缺乏。在這項綜述中,我們提供了一個全麵的Transformer綜述。我們首先簡單介紹了普通的Transformer,然後提出了一個x-former的新分類。接下來,我們將從三個方麵介紹不同的x -former架構修改,預訓練和應用。最後,展望了未來的研究方向。
//www.webtourguide.com/paper/f03a47eb6ddb5d23c07f51662f3220a0
引言
Transformer[136]是一種出色的深度學習模型,被廣泛應用於自然語言處理(NLP)、計算機視覺(CV)和語音處理等各個領域。Transformer最初是作為一種用於機器翻譯的序列到序列模型提出的[129]。後來的工作表明,基於Transformer的預訓練模型(PTMs)[100]可以在各種任務上實現最先進的性能。因此,Transformer已經成為NLP的首選架構,特別是對於PTMs。除了語言相關的應用,Transformer也被應用於CV[13, 33, 94],音頻處理[15,31,41],甚至其他學科,如化學[113]和生命科學[109]。
由於成功,各種各樣的Transformer 變種(即x -former)在過去幾年裏被提出。這些X-formers從不同的角度改進了vanilla Transformer。
(1) 模型的效率。應用Transformer的一個關鍵挑戰是它在處理長序列時效率低下,這主要是由於自注意力模塊的計算和存儲複雜性。改進方法包括輕量級注意力(例如稀疏注意變體)和分治法(例如循環和分層機製)。
(2) 模型泛化。由於Transformer是一種靈活的體係結構,並且很少對輸入數據的結構偏差進行假設,因此很難對小規模數據進行訓練。改進方法包括引入結構偏差或正則化、對大規模無標記數據進行預處理等。
(3) 模型的適應。該工作旨在使Transformer適應特定的下遊任務和應用程序。
在這個綜述中,我們的目的是提供一個Transformer及其變體的全麵綜述。雖然我們可以根據上麵提到的觀點來組織x-former,但許多現有的x前輩可能會解決一個或幾個問題。例如,稀疏注意變量不僅降低了計算複雜度,而且在輸入數據上引入了結構先驗,緩解了小數據集上的過擬合問題。因此,將現有的各種X-formers進行分類,並根據它們改進Transformer的方式提出新的分類方法會更有條理: 架構修改、預訓練和應用。考慮到本次綜述的受眾可能來自不同的領域,我們主要關注於一般的架構變體,而隻是簡單地討論了預訓練和應用的具體變體。
到目前為止,基於普通Transformer的各種模型已經從三個角度被提出:架構修改的類型、預訓練的方法和應用。圖2給出了Transformer變種的分類說明。
盡管“x-formers”已經證明了他們在各種任務上的能力,但挑戰仍然存在。除了目前關注的問題(如效率和泛化),Transformer的進一步改進可能在以下幾個方向:
(1) 理論分析。Transformer的體係結構已被證明能夠支持具有足夠參數的大規模訓練數據集。許多工作表明,Transformer比CNN和RNN有更大的容量,因此有能力處理大量的訓練數據。當Transformer在足夠的數據上進行訓練時,它通常比CNN或RNN有更好的性能。一個直觀的解釋是,Transformer對數據結構沒有什麼預先假設,因此比CNN和RNN更靈活。然而,理論原因尚不明確,我們需要對Transformer能力進行一些理論分析。
(2) 注意力機製之外的全局交互機製更加完善。Transformer的一個主要優點是使用注意力機製來建模輸入數據中節點之間的全局依賴關係。然而,許多研究表明,對大多數節點來說,完全注意力是不必要的。在某種程度上,不可區分地計算所有節點的注意力是低效的。因此,在有效地建模全局交互方麵仍有很大的改進空間。一方麵,自注意力模塊可以看作是一個具有動態連接權的全連接神經網絡,通過動態路由聚合非局部信息; 因此,其他動態路由機製是值得探索的替代方法。另一方麵,全局交互也可以通過其他類型的神經網絡來建模,比如記憶增強模型。
(3) 多模態數據統一框架。在許多應用場景中,集成多模態數據對於提高任務性能是非常有用和必要的。此外,一般的人工智能還需要能夠捕獲跨不同模式的語義關係。由於Transformer在文本、圖像、視頻和音頻方麵取得了巨大的成功,我們有機會建立一個統一的框架,更好地捕捉多模態數據之間的內在聯係。但是,在設計中對模式內和模式間的注意還有待改進。
文本排序的目標是生成從語料庫檢索到的有序文本列表,以響應特定任務的查詢。雖然文本排序最常見的形式是搜索,但在許多自然語言處理應用程序中也可以找到該任務的實例。
本書提供了Transformer神經網絡架構的文本排序的概述,其中BERT是最著名的例子。毫不誇張地說,Transformer和自監督預訓練的結合徹底改變了自然語言處理(NLP)、信息檢索(IR)等領域。在文本排名的上下文中,這些模型在許多領域、任務和設置中產生高質量的結果。
在這項綜述中,我們提供了現有工作的綜合,作為希望更好地理解如何將transformers應用於文本排序問題的從業者和希望在這一領域繼續工作的研究人員的單一切入點。我們涵蓋了廣泛的現代技術,分為兩個高級類別:在多階段排名體係結構中執行重新排名的transformer模型,以及嚐試直接執行排名的密集表示。有許多例子屬於第一類,包括基於相關性分類的方法、來自多個文本片段的證據聚合、語料庫分析和序列到序列模型。雖然第二類方法還沒有得到很好的研究,但使用transformers進行表示學習是一個新興的和令人興奮的方向,必將引起更多的關注。在我們的調研中,有兩個主題貫穿始終:處理長文檔的技術(在NLP中使用的典型逐句處理方法之外),以及處理有效性(結果質量)和效率(查詢延遲)之間權衡的技術。
盡管transformer架構和預訓練技術是最近的創新,但它們如何應用於文本排序的許多方麵已經被比較好地理解,並代表了成熟的技術。然而,仍然存在許多開放的研究問題,因此,除了為文本排序預先設定訓練transformers的基礎之外,該調研還試圖預測該領域的發展方向。
//www.webtourguide.com/paper/fe2037d3186f4dd1fe3c3ea1fb69f79e
來自UIUC的Transformers最新教程。
Transformer 架構 architecture Attention models Implementation details Transformer-based 語言模型 language models BERT GPT Other models
Transformer 視覺 Applications of Transformers in vision
深度神經網絡在擁有大量數據集和足夠的計算資源的情況下能夠取得巨大的成功。然而,他們快速學習新概念的能力相當有限。元學習是解決這一問題的一種方法,通過使網絡學會如何學習。令人興奮的深度元學習領域正在高速發展,但缺乏對當前技術的統一、深刻的概述。這項工作就是這樣。在為讀者提供理論基礎之後,我們研究和總結了主要的方法,這些方法被分為i)度量;ii)模型;和iii)基於優化的技術。此外,我們確定了主要的開放挑戰,如在異構基準上的性能評估,以及元學習計算成本的降低。
摘要:
近年來,深度學習技術在各種任務上取得了顯著的成功,包括遊戲(Mnih et al., 2013; Silver et al., 2016),圖像識別(Krizhevsky et al., 2012; He et al., 2015)和機器翻譯(Wu et al., 2016)。盡管取得了這些進展,但仍有大量的挑戰有待解決,例如實現良好性能所需的大量數據和訓練。這些要求嚴重限製了深度神經網絡快速學習新概念的能力,這是人類智能的定義方麵之一(Jankowski等人,2011;(Lake等,2017)。
元學習被認為是克服這一挑戰的一種策略(Naik and Mammone, 1992; Schmidhuber, 1987; Thrun, 1998)。其關鍵思想是元學習主體隨著時間的推移提高自己的學習能力,或者等價地說,學會學習。學習過程主要與任務(一組觀察)有關,並且發生在兩個不同的層次上:內部和外部。在內部層,一個新的任務被提出,代理試圖快速地從訓練觀察中學習相關的概念。這種快速的適應是通過在外部層次的早期任務中積累的知識來促進的。因此,內部層關注的是單個任務,而外部層關注的是多個任務。
從曆史上看,元學習這個術語的使用範圍很廣。從最廣泛的意義上說,它概括了所有利用之前的學習經驗以更快地學習新任務的係統(Vanschoren, 2018)。這個廣泛的概念包括更傳統的機器學習算法選擇和hyperparameter優化技術(Brazdil et al ., 2008)。然而,在這項工作中,我們專注於元學習領域的一個子集,該領域開發元學習程序來學習(深度)神經網絡的良好誘導偏差。1從今以後,我們使用術語深元學習指元學習的領域。
深度元學習領域正在快速發展,但它缺乏一個連貫、統一的概述,無法提供對關鍵技術的詳細洞察。Vanschoren(2018)對元學習技術進行了調查,其中元學習被廣泛使用,限製了對深度元學習技術的描述。此外,在調查發表後,深度元學習領域也出現了許多令人興奮的發展。Hospedales等人(2020)最近的一項調查采用了與我們相同的深度元學習概念,但目標是一個廣泛的概述,而忽略了各種技術的技術細節。
我們試圖通過提供當代深度元學習技術的詳細解釋來填補這一空白,使用統一的符號。此外,我們確定了當前的挑戰和未來工作的方向。更具體地說,我們覆蓋了監督和強化學習領域的現代技術,已經實現了最先進的性能,在該領域獲得了普及,並提出了新的想法。由於MAML (Finn et al., 2017)和相關技術對該領域的影響,我們給予了格外的關注。本研究可作為深度元學習領域的係統性介紹,並可作為該領域資深研究人員的參考資料。在整個過程中,我們將采用Vinyals(2017)所使用的分類法,該分類法確定了三種深度元學習方法:i)度量、ii)模型和iii)基於優化的元學習技術。
摘要
Transformer模型架構最近引起了極大的興趣,因為它們在語言、視覺和強化學習等領域的有效性。例如,在自然語言處理領域,Transformer已經成為現代深度學習堆棧中不可缺少的主要部分。最近,提出的令人眼花繚亂的X-former模型如Linformer, Performer, Longformer等這些都改進了原始Transformer架構的X-former模型,其中許多改進了計算和內存效率。為了幫助熱心的研究人員在這一混亂中給予指導,本文描述了大量經過深思熟慮的最新高效X-former模型的選擇,提供了一個跨多個領域的現有工作和模型的有組織和全麵的概述。
關鍵詞:深度學習,自然語言處理,Transformer模型,注意力模型
介紹
Transformer是現代深度學習領域中一股強大的力量。Transformer無處不在,在語言理解、圖像處理等許多領域都產生了巨大的影響。因此,在過去的幾年裏,大量的研究致力於對該模型進行根本性的改進,這是很自然的。這種巨大的興趣也刺激了對該模式更高效變體的研究。
最近出現了大量的Transformer模型變體,研究人員和實踐者可能會發現跟上創新的速度很有挑戰性。在撰寫本文時,僅在過去6個月裏就提出了近12種新的以效率為中心的模式。因此,對現有文獻進行綜述,既有利於社區,又十分及時。
自注意力機製是確定Transformer模型的一個關鍵特性。該機製可以看作是一種類似圖的歸納偏差,它通過基於關聯的池化操作將序列中的所有標記連接起來。一個眾所周知的自注意力問題是二次時間和記憶複雜性,這可能阻礙模型在許多設置的可伸縮性。最近,為了解決這個問題,出現了大量的模型變體。以下我們將這類型號命名為“高效Transformers”。
根據上下文,可以對模型的效率進行不同的解釋。它可能指的是模型的內存占用情況,當模型運行的加速器的內存有限時,這一點非常重要。效率也可能指計算成本,例如,在訓練和推理期間的失敗次數。特別是對於設備上的應用,模型應該能夠在有限的計算預算下運行。在這篇綜述中,我們提到了Transformer在內存和計算方麵的效率,當它們被用於建模大型輸入時。
有效的自我注意力模型在建模長序列的應用中是至關重要的。例如,文檔、圖像和視頻通常都由相對大量的像素或標記組成。因此,處理長序列的效率對於Transformer的廣泛采用至關重要。
本篇綜述旨在提供這類模型的最新進展的全麵概述。我們主要關注的是通過解決自我注意力機製的二次複雜性問題來提高Transformer效率的建模進展和架構創新,我們還將在後麵的章節簡要討論一般改進和其他效率改進。
本文提出了一種高效Transformer模型的分類方法,並通過技術創新和主要用例對其進行了表征。特別地,我們回顧了在語言和視覺領域都有應用的Transformer模型,試圖對各個領域的文獻進行分析。我們還提供了許多這些模型的詳細介紹,並繪製了它們之間的聯係。
最近東北大學自然語言處理實驗室在Github上發布了自然語言處理與機器學習最新綜述論文合集,共有358篇之多,涵蓋ML&nlp眾多主題 , 是一份非常不錯的指南!
地址:https://github.com/NiuTrans/ABigSurvey#architectures
在本文中,我們調研了數百篇關於自然語言處理(NLP)和機器學習(ML)的綜述論文。我們將這些論文按熱門話題分類,並對一些有趣的問題進行簡單計算。此外,我們還顯示了論文的url列表(358篇論文)。
Natural Language Processing Lab., School of Computer Science and Engineering, Northeastern University
NiuTrans Research
In this document, we survey hundreds of survey papers on Natural Language Processing (NLP) and Machine Learning (ML). We categorize these papers into popular topics and do simple counting for some interesting problems. In addition, we show the list of the papers with urls (358 papers).
We follow the ACL and ICML submission guideline of recent years, covering a broad range of areas in NLP and ML. The categorization is as follows:
To reduce class imbalance, we separate some of the hot sub-topics from the original categorization of ACL and ICML submissions. E.g., NER is a first-level area in our categorization because it is the focus of several surveys.
We show the number of paper in each area in Figures 1-2.
Figure 1: # of papers in each NLP area.
Figure 2: # of papers in each ML area..
Also, we plot paper number as a function of publication year (see Figure 3).
Figure 3: # of papers vs publication year.
In addition, we generate word clouds to show hot topics in these surveys (see Figures 4-5).
Figure 4: The word cloud for NLP.
Figure 5: The word cloud for ML.
Computational Sociolinguistics: A Survey.Computational Linguistics 2016paper
Dong Nguyen, A Seza Dogruoz, Carolyn Penstein Rose, Franciska De Jong
A Comparative Survey of Recent Natural Language Interfaces for Databases.VLDB 2019paper
Katrin Affolter, Kurt Stockinger, Abraham Bernstein
A Survey of Arabic Dialogues Understanding for Spontaneous Dialogues and Instant Message.arXiv 2015paper
AbdelRahim A. Elmadany, Sherif M. Abdou, Mervat Gheith
A Survey of Available Corpora for Building Data-Driven Dialogue Systems.arXiv 2015paper
Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, Joelle Pineau
A Survey of Document Grounded Dialogue Systems.arXiv 2020paper
Longxuan Ma, Wei-Nan Zhang, Mingda Li, Ting Liu
A Survey of Natural Language Generation Techniques with a Focus on Dialogue Systems - Past, Present and Future Directions.arXiv 2019paper
Sashank Santhanam, Samira Shaikh
A Survey on Dialog Management: Recent Advances and Challenges.arXiv 2020paper
Yinpei Dai, Huihua Yu, Yixuan Jiang, Chengguang Tang, Yongbin Li, Jian Sun
A Survey on Dialogue Systems: Recent Advances and New Frontiers.Sigkdd Explorations 2017paper
Hongshen Chen, Xiaorui Liu, Dawei Yin, Jiliang Tang
Challenges in Building Intelligent Open-domain Dialog Systems.arXiv 2019paper
Minlie Huang, Xiaoyan Zhu, Jianfeng Gao
Neural Approaches to Conversational AI.ACL 2018paper
Jianfeng Gao, Michel Galley, Lihong Li
Recent Advances and Challenges in Task-oriented Dialog System.arXiv 2020paper
Zheng Zhang, Ryuichi Takanobu, Minlie Huang, Xiaoyan Zhu
A bit of progress in language modeling.arXiv 2001paper
Joshua T. Goodman
A Survey of Paraphrasing and Textual Entailment Methods.Journal of Artificial Intelligence Research 2010paper
Ion Androutsopoulos, Prodromos Malakasiotis
A Survey on Neural Network Language Models.arXiv 2019paper
Kun Jing, Jungang Xu
Neural Text Generation: Past, Present and Beyond.arXiv 2018paper
Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang, Yong Yu
Pre-trained Models for Natural Language Processing : A Survey.arXiv 2020paper
Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, Xuanjing Huang
Recent Advances in Neural Question Generation.arXiv 2019paper
Liangming Pan, Wenqiang Lei, Tat-Seng Chua, Min-Yen Kan
Recent Advances in SQL Query Generation: A Survey.arXiv 2020paper
Jovan Kalajdjieski, Martina Toshevska, Frosina Stojanovska
Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation.Journal of Artificial Intelligence Research 2018paper
Albert Gatt,Emiel Krahmer
A Survey of Deep Learning Methods for Relation Extraction.arXiv 2017paper
Shantanu Kumar
A Survey of Event Extraction From Text.IEEE 2019paper
Wei Xiang, Bang Wang
A Survey of Neural Network Techniques for Feature Extraction from Text.arXiv 2017paper
Vineet John
A Survey on Open Information Extraction.COLING 2018paper
Christina Niklaus, Matthias Cetto, André Freitas, Siegfried Handschuh
A Survey on Temporal Reasoning for Temporal Information Extraction from Text (Extended Abstract).arXiv 2019paper
Artuur Leeuwenberg, Marie-Francine Moens
Automatic Extraction of Causal Relations from Natural Language Texts: A Comprehensive Survey.arXiv 2016paper
Nabiha Asghar
Content Selection in Data-to-Text Systems: A Survey.arXiv 2016paper
Dimitra Gkatzia
Keyphrase Generation: A Multi-Aspect Survey.FRUCT 2019paper
Erion Cano, Ondrej Bojar
More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction.arXiv 2020paper
Xu Han, Tianyu Gao, Yankai Lin, Hao Peng, Yaoliang Yang, Chaojun Xiao, Zhiyuan Liu, Peng Li, Maosong Sun, Jie Zhou:
Relation Extraction : A Survey.arXiv 2017paper
Sachin Pawar, Girish K. Palshikar, Pushpak Bhattacharyya
Short Text Topic Modeling Techniques, Applications, and Performance: A Survey.arXiv 2019paper
Jipeng Qiang, Zhenyu Qian, Yun Li, Yunhao Yuan, Xindong Wu
A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques.arXiv 2017paper
Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi, Saied Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, Krys Kochut
A survey of methods to ease the development of highly multilingual text mining applications.language resources and evaluation 2012paper
Ralf Steinberger
Opinion Mining and Analysis: A survey.IJNLC 2013paper
Arti Buche, M. B. Chandak, Akshay Zadgaonkar
Analysis Methods in Neural Language Processing: A Survey.NACCL 2018paper
Yonatan Belinkov, James R. Glass
Analyzing and Interpreting Neural Networks for NLP: A Report on the First BlackboxNLP Workshop.EMNLP 2019paper
Afra Alishahi, Grzegorz Chrupala, Tal Linzen
Beyond Leaderboards: A survey of methods for revealing weaknesses in Natural Language Inference data and models.arXiv 2020paper
Viktor Schlegel, Goran Nenadic, Riza Batista-Navarro
Visualizing Natural Language Descriptions: A Survey.ACM 2016paper
Kaveh Hassani, Won-Sook Lee
When do Word Embeddings Accurately Reflect Surveys on our Beliefs About People?.ACL 2020paper
Kenneth Joseph, Jonathan H. Morgan
A survey of techniques for constructing chinese knowledge graphs and their applications.mdpi 2018paper
Tianxing Wu, Guilin Qi, Cheng Li, Meng Wang
A Survey on Knowledge Graphs: Representation, Acquisition and Applications.arXiv 2020paper
Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, Philip S. Yu:
Knowledge Graph Embedding for Link Prediction: A Comparative Analysis.arXiv 2016paper
Andrea Rossi, Donatella Firmani, Antonio Matinata, Paolo Merialdo, Denilson Barbosa
Knowledge Graph Embedding: A Survey of Approaches and Applications.IEEE 2017paper
Quan Wang, Zhendong Mao, Bin Wang, Li Guo
Knowledge Graphs.arXiv 2020paper
Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier, Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, Antoine Zimmermann
Emotionally-Aware Chatbots: A Survey.arXiv 2018paper
Endang Wahyu Pamungkas
Trends in Integration of Vision and Language Research: A Survey of Tasks, Datasets, and Methods.arXiv 2019paper
Aditya Mogadala, Marimuthu Kalimuthu, Dietrich Klakow
Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing.Comput. Linguistics 45(3) 2019paper
Edoardo Maria Ponti, Helen O'Horan, Yevgeni Berzak, Ivan Vulic, Roi Reichart, Thierry Poibeau, Ekaterina Shutova, Anna Korhonen
Survey on the Use of Typological Information in Natural Language Processing.COLING 2016paper
Helen O'Horan, Yevgeni Berzak, Ivan Vulic, Roi Reichart, Anna Korhonen
A comprehensive survey of mostly textual document segmentation algorithms since 2008.Pattern Recognition 2017paper
Sébastien Eskenazi, Petra Gomez-Kramer, Jean-Marc Ogier
A Primer on Neural Network Models for Natural Language Processing.arXiv 2015paper
Yoav Goldberg
A Survey Of Cross-lingual Word Embedding Models.Journal of Artificial Intelligence Research 2019paper
Sebastian Ruder, Ivan Vulic, Anders Sogaard
A Survey of Neural Networks and Formal Languages.arXiv 2020paper
Joshua Ackerman, George Cybenko
A Survey of the Usages of Deep Learning in Natural Language Processing.IEEE 2018paper
Daniel W. Otter, Julian R. Medina, Jugal K. Kalita
A Survey on Contextual Embeddings.arXiv 2020paper
Qi Liu, Matt J. Kusner, Phil Blunsom
Adversarial Attacks and Defense on Texts: A Survey.arXiv 2020paper
Aminul Huq, Mst. Tasnim Pervin
Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey.arXiv 2019paper
Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, Chenliang Li
An Introductory Survey on Attention Mechanisms in NLP Problems.IntelliSys 2019paper
Dichao Hu
Attention in Natural Language Processing.arXiv 2019paper
Andrea Galassi, Marco Lippi, Paolo Torroni
From static to dynamic word representations: a survey.ICMLC 2020paper
Yuxuan Wang, Yutai Hou, Wanxiang Che, Ting Liu
From Word to Sense Embeddings: A Survey on Vector Representations of Meaning.Journal of Artificial Intelligence Research 2018paper
Jose Camachocollados, Mohammad Taher Pilehvar
Natural Language Processing Advancements By Deep Learning: A Survey.arXiv 2020paper
Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavvaf, Edward A. Fox
Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering.COLING 2018paper
Wuwei Lan,Wei Xu
Recent Trends in Deep Learning Based Natural Language Processing.IEEE 2018paper
Tom Young, Devamanyu Hazarika, Soujanya Poria, Erik Cambria
Symbolic, Distributed and Distributional Representations for Natural Language Processing in the Era of Deep Learning: a Survey.arXiv 2017paper
Lorenzo Ferrone, Fabio Massimo Zanzotto
Towards a Robust Deep Neural Network in Texts: A Survey.arXiv 2020paper
Wenqi Wang, Lina Wang, Run Wang, Zhibo Wang, Aoshuang Ye
Word Embeddings: A Survey.arXiv 2019paper
Felipe Almeida, Geraldo Xexéo
A Brief Survey of Multilingual Neural Machine Translation.arXiv 2019paper
Raj Dabre, Chenhui Chu, Anoop Kunchukuttan
A Comprehensive Survey of Multilingual Neural Machine Translation.arXiv 2020paper
Raj Dabre, Chenhui Chu, Anoop Kunchukuttan
A Survey of Deep Learning Techniques for Neural Machine Translation.arXiv 2020paper
Shuoheng Yang, Yuxin Wang, Xiaowen Chu
A Survey of Domain Adaptation for Neural Machine Translation.COLING 2018paper
Chenhui Chu, Rui Wang
A Survey of Methods to Leverage Monolingual Data in Low-resource Neural Machine Translation.arXiv 2019paper
Ilshat Gibadullin, Aidar Valeev, Albina Khusainova, Adil Mehmood Khan
A Survey of Multilingual Neural Machine Translation.arXiv 2020paper
Raj Dabre, Chenhui Chu, Anoop Kunchukuttan
A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena.Comput Linguistics 2016paper
Arianna Bisazza, Marcello Federico
A Survey on Document-level Machine Translation: Methods and Evaluation.arXiv 2019paper
Sameen Maruf, Fahimeh Saleh, Gholamreza Haffari
Machine Translation Approaches and Survey for Indian Languages.arXiv 2017paper
Nadeem Jadoon Khan, Waqas Anwar, Nadir Durrani
Machine Translation Evaluation Resources and Methods: A Survey.arXiv 2018paper
Lifeng Han
Machine Translation using Semantic Web Technologies: A Survey.Journal of Web Semantics 2018paper
Diego Moussallem, Matthias Wauer, Axelcyrille Ngonga Ngomo
Machine-Translation History and Evolution: Survey for Arabic-English Translations.arXiv 2017paper
Nabeel T. Alsohybe, Neama Abdulaziz Dahan, Fadl Mutaher Baalwi
Neural Machine Translation and Sequence-to-Sequence Models: A Tutorial.arXiv 2017paper
Graham Neubig
Neural Machine Translation: A Review.arXiv 2019paper
Felix Stahlberg
Neural Machine Translation: Challenges, Progress and Future.arXiv 2020paper
Jiajun Zhang, Chengqing Zong
The Query Translation Landscape: a Survey.arXiv 2019paper
Mohamed Nadjib Mami, Damien Graux, Harsh Thakkar, Simon Scerri, Soren Auer, Jens Lehmann
A Survey and Classification of Controlled Natural Languages.Comput. Linguistics 2014paper
Tobias Kuhn
Jumping NLP curves: A review of natural language processing research.IEEE 2014paper
Erik Cambria ; Bebo White
Natural Language Processing - A Survey.arXiv 2012paper
Kevin Mote
Natural Language Processing: State of The Art, Current Trends and Challenges.arXiv 2017paper
Diksha Khurana, Aditya Koli, Kiran Khatter, Sukhdev Singh
A survey of named entity recognition and classification.Lingvistic Investigationes 2007paper
David Nadeau, Satoshi Sekine
A Survey of Named Entity Recognition in Assamese and other Indian Languages.arXiv 2014paper
Gitimoni Talukdar, Pranjal Protim Borah, Arup Baruah
A Survey on Deep Learning for Named Entity Recognition.arXiv 2018paper
Jing Li, Aixin Sun, Jianglei Han, Chenliang Li
A Survey on Recent Advances in Named Entity Recognition from Deep Learning models.COLING 2019paper
Vikas Yadav, Steven Bethard
Design Challenges and Misconceptions in Neural Sequence Labeling.COLING 2018paper
Jie Yang, Shuailong Liang, Yue Zhang
Neural Entity Linking: A Survey of Models based on Deep Learning.arXiv 2020paper
Ozge Sevgili, Artem Shelmanov, Mikhail Arkhipov, Alexander Panchenko, Chris Biemann
A Comprehensive Survey of Grammar Error arXivection.arXiv 2020paper
Yu Wang, Yuelin Wang, Jie Liu, Zhuo Liu
A Short Survey of Biomedical Relation Extraction Techniques.arXiv 2017paper
Elham Shahab
A Survey on Natural Language Processing for Fake News Detection.LREC 2020paper
Ray Oshikawa, Jing Qian, William Yang Wang
Automatic Language Identification in Texts: A Survey.J. Artif. Intell. Res. 65 2019paper
Tommi Jauhiainen
Disinformation Detection: A review of linguistic feature selection and classification models in news veracity assessments.arXiv 2019paper
Jillian Tompkins
Extraction and Analysis of Fictional Character Networks: A Survey.ACM 2019paper
Xavier Bost (LIA), Vincent Labatut (LIA)
Fake News Detection using Stance Classification: A Survey.arXiv 2019paper
Anders Edelbo Lillie, Emil Refsgaard Middelboe
Fake News: A Survey of Research, Detection Methods, and Opportunities.ACM 2018paper
Xinyi Zhou, Reza Zafarani
Image Captioning based on Deep Learning Methods: A Survey.arXiv 2019paper
Yiyu Wang, Jungang Xu, Yingfei Sun, Ben He
SECNLP: A Survey of Embeddings in Clinical Natural Language Processing.J. Biomed. Informatics 2019paper
Kalyan KS, S Sangeetha
Survey of Text-based Epidemic Intelligence: A Computational Linguistic Perspective.ACM 2019paper
Aditya Joshi, Sarvnaz Karimi, Ross Sparks, Cecile Paris, C Raina MacIntyre
Text Detection and Recognition in the Wild: A Review.arXiv 2020paper
Zobeir Raisi, Mohamed A. Naiel, Paul Fieguth, Steven Wardell, John Zelek
Text Recognition in the Wild: A Survey.arXiv 2020paper
Xiaoxue Chen, Lianwen Jin, Yuanzhi Zhu, Canjie Luo, Tianwei Wang
A survey on question answering technology from an information retrieval perspective.Information Sciences 2011paper
Oleksandr Kolomiyets, Marie-Francine Moens:
A Survey on Why-Type Question Answering Systems.arXiv 2019paper
Manvi Breja, Sanjay Kumar Jain:
Core techniques of question answering systems over knowledge bases: a survey.SpringerLink 2017paper
Dennis Diefenbach, Vanessa Lopez, Kamal Singh & Pierre Maret
Introduction to Neural Network based Approaches for Question Answering over Knowledge Graphs.arXiv 2019paper
Nilesh Chakraborty,Denis Lukovnikov,Gaurav Maheshwari,Priyansh Trivedi,Jens Lehmann,Asja Fischer:
Survey of Visual Question Answering: Datasets and Techniques.arXiv 2017paper
Akshay Kumar Gupta
Text-based Question Answering from Information Retrieval and Deep Neural Network Perspectives: A Survey.arXiv 2020paper
Zahra Abbasiyantaeb, Saeedeh Momtazi:
Tutorial on Answering Questions about Images with Deep Learning.arXiv 2016paper
Mateusz Malinowski, Mario Fritz:
Visual Question Answering using Deep Learning: A Survey and Performance Analysis.arXiv 2019paper
Yash Srivastava, Vaishnav Murali, Shiv Ram Dubey, Snehasis Mukherjee:
A Survey on Machine Reading Comprehension Systems.arXiv 2020paper
Razieh Baradaran, Razieh Ghiasi, Hossein Amirkhani:
A Survey on Neural Machine Reading Comprehension.arXiv 2019paper
Boyu Qiu, Xu Chen, Jungang Xu, Yingfei Sun:
Machine Reading Comprehension: a Literature Review.arXiv 2019paper
Xin Zhang, An Yang, Sujian Li, Yizhong Wang
Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond.arXiv 2020paper
Zhuosheng Zhang, Hai Zhao, Rui Wang
Neural Machine Reading Comprehension: Methods and Trends.arXiv 2019paper
Shanshan Liu, Xin Zhang, Sheng Zhang, Hui Wang, Weiming Zhang:
A review on deep learning for recommender systems: challenges and remedies.SpringerLink 2019paper
Zeynep Batmaz, Ali Yurekli, Alper Bilge, Cihan Kaleli:
A Survey on Knowledge Graph-Based Recommender Systems.arXiv 2020paper
Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu Zhu, Xing Xie, Hui Xiong, Qing He
Adversarial Machine Learning in Recommender Systems: State of the art and Challenges.ACM 2020paper
Yashar Deldjoo, Tommaso Di Noia, Felice Antonio Merra
Cross Domain Recommender Systems: A Systematic Literature Review.ACM 2017paper
Muhammad Murad Khan,Roliana Ibrahim,Imran Ghani
Deep Learning based Recommender System: A Survey and New Perspectives.ACM 2019paper
Shuai Zhang, Lina Yao, Aixin Sun, Yi Tay:
Deep Learning on Knowledge Graph for Recommender System: A Survey.ACM 2020paper
Yang Gao, Yi-Fan Li, Yu Lin, Hang Gao, Latifur Khan
Explainable Recommendation: A Survey and New Perspectives.arXiv 2020paper
Yongfeng Zhang, Xu Chen:
Sequence-Aware Recommender Systems.ACM 2018paper
Massimo Quadrana,Paolo Cremonesi,Dietmar Jannach
Use of Deep Learning in Modern Recommendation System: A Summary of Recent Works.arXiv 2017paper
Ayush Singhal, Pradeep Sinha, Rakesh Pant:
A Short Survey on Sense-Annotated Corpora.LREC 2020paper
Tommaso Pasini, José Camacho-Collados:
A Survey of Current Datasets for Vision and Language Research.EMNLP 2015paper
Francis Ferraro, Nasrin Mostafazadeh, Ting-Hao (Kenneth) Huang, Lucy Vanderwende, Jacob Devlin, Michel Galley, Margaret Mitchell:
A Survey of Word Embeddings Evaluation Methods.arXiv 2018paper
Amir Bakarov
Critical Survey of the Freely Available Arabic Corpora.arXiv 2017paper
Wajdi Zaghouani:
Distributional Measures of Semantic Distance: A Survey.arXiv 2012paper
Saif Mohammad, Graeme Hirst:
Measuring Sentences Similarity: A Survey.Indian Journal of Science and Technology 2019paper
Mamdouh Farouk:
Recent Advances in Natural Language Inference: A Survey of Benchmarks, Resources, and Approaches.arXiv 2020paper
Shane Storks, Qiaozi Gao, Joyce Y. Chai
Survey on Evaluation Methods for Dialogue Systems.arXiv 2019paper
Jan Deriu, álvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, Mark Cieliebak:
Survey on Publicly Available Sinhala Natural Language Processing Tools and Research.arXiv 2019paper
Nisansa de Silva
Diachronic word embeddings and semantic shifts: a survey.COLING 2018paper
Andrey Kutuzov, Lilja Ovrelid, Terrence Szymanski, Erik Velldal
Evolution of Semantic Similarity -- A Survey.arXiv 2020paper
Dhivya Chandrasekaran, Vijay Mago
Semantic search on text and knowledge bases.Foundations and trends in information retrieval 2016paper
Hannah Bast , Bjorn Buchhold, Elmar Haussmann
Semantics, Modelling, and the Problem of Representation of Meaning -- a Brief Survey of Recent Literature.arXiv 2014paper
Yarin Gal
Survey of Computational Approaches to Lexical Semantic Change.arXiv 2019paper
Nina Tahmasebi, Lars Borin, Adam Jatowt
Word sense disambiguation: a survey.ACM 2015paper
Alok Ranjan Pal, Diganta Saha
A Comprehensive Survey on Aspect Based Sentiment Analysis.arXiv 2020paper
Kaustubh Yadav
A Survey on Sentiment and Emotion Analysis for Computational Literary Studies.arXiv 2018paper
Evgeny Kim, Roman Klinger
Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research.arXiv 2020paper
Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Rada Mihalcea
Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges.IEEE 2019paper
Jie Zhou, Jimmy Xiangji Huang, Qin Chen, Qinmin Vivian Hu, Tingting Wang, Liang He
Deep Learning for Sentiment Analysis : A Survey.Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery 2018paper
Lei Zhang, Shuai Wang, Bing Liu
Sentiment analysis for Arabic language: A brief survey of approaches and techniques.arXiv 2018paper
Mo'ath Alrefai, Hossam Faris, Ibrahim Aljarah
Sentiment Analysis of Czech Texts: An Algorithmic Survey.ICAART 2019paper
Erion Cano, Ondrej Bojar
Sentiment Analysis of Twitter Data: A Survey of Techniques.arXiv 2016paper
Vishal.A.Kharde, Prof. Sheetal.Sonawane
Sentiment Analysis on YouTube: A Brief Survey.arXiv 2015paper
Muhammad Zubair Asghar, Shakeel Ahmad, Afsana Marwat, Fazal Masud Kundi
Sentiment/Subjectivity Analysis Survey for Languages other than English.Social Netw. Analys. Mining 2016paper
Mohammed Korayem, Khalifeh Aljadda, David Crandall
Word Embeddings for Sentiment Analysis: A Comprehensive Empirical Survey.arXiv 2019paper
Erion Cano, Maurizio Morisio
A Comprehensive Survey on Cross-modal Retrieval.arXiv 2016paper
Kaiye Wang
A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis.arXiv 2019paper
Jorge Agnese, Jonathan Herrera, Haicheng Tao, Xingquan Zhu
A Survey of Code-switched Speech and Language Processing.arXiv 2019paper
Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Krishna Rallabandi, Alan W. Black
A Survey of Recent DNN Architectures on the TIMIT Phone Recognition Task.TSD 2018paper
Josef Michálek, Jan Vanek
A Survey of Voice Translation Methodologies - Acoustic Dialect Decoder.arXiv 2016paper
Hans Krupakar, Keerthika Rajvel, Bharathi B, Angel Deborah S, Vallidevi Krishnamurthy
Automatic Description Generation from Images: A Survey of Models, Datasets, and Evaluation Measures.IJCAI 2017paper
Raffaella Bernardi, Ruket Cakici, Desmond Elliott, Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis, Frank Keller, Adrian Muscat, Barbara Plank
Informed Machine Learning -- A Taxonomy and Survey of Integrating Knowledge into Learning Systems.arXiv 2019paper
Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, Michal Walczak, Jochen Garcke, Christian Bauckhage, Jannis Schuecker
Multimodal Machine Learning: A Survey and Taxonomy.IEEE 2019paper
Tadas Baltrusaitis, Chaitanya Ahuja, Louis-Philippe Morency
Speech and Language Processing.Stanford University 2019paper
Dan Jurafsky and James H. Martin
A Survey on Neural Network-Based Summarization Methods.arXiv 2018paper
Yue Dong
Abstractive Summarization: A Survey of the State of the Art.AAAI 2019paper
Hui Lin, Vincent Ng
Automated text summarisation and evidence-based medicine: A survey of two domains.arXiv 2017paper
Abeed Sarker, Diego Mollá Aliod, Cécile Paris
Automatic Keyword Extraction for Text Summarization: A Survey.arXiv 2017paper
Santosh Kumar Bharti, Korra Sathya Babu
From Standard Summarization to New Tasks and Beyond: Summarization with Manifold Information.arXiv 2020paper
Shen Gao, Xiuying Chen, Zhaochun Ren, Dongyan Zhao, Rui Yan
Neural Abstractive Text Summarization with Sequence-to-Sequence Models: A Survey.arXiv 2018paper
Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, Chandan K. Reddy
Recent automatic text summarization techniques: a survey.Artificial Intelligence Review 2016paper
Mahak Gambhir, Vishal Gupta
Text Summarization Techniques: A Brief Survey.IJCAI 2017paper
Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D. Trippe, Juan B. Gutierrez, Krys Kochut
A Neural Entity Coreference Resolution Review.arXiv 2019paper
Nikolaos Stylianou, Ioannis Vlahavas
A survey of cross-lingual features for zero-shot cross-lingual semantic parsing.arXiv 2019paper
Jingfeng Yang, Federico Fancellu, Bonnie L. Webber
A Survey on Semantic Parsing.AKBC 2019paper
Aishwarya Kamath, Rajarshi Das
The Gap of Semantic Parsing: A Survey on Automatic Math Word Problem Solvers.arXiv 2018paper
Dongxiang Zhang, Lei Wang, Nuo Xu, Bing Tian Dai, Heng Tao Shen
A Survey of Naive Bayes Machine Learning approach in Text Document Classification.IJCSIS 2010paper
K. A. Vidhya, G. Aghila
A survey on phrase structure learning methods for text classification.IJNLC 2014paper
Reshma Prasad, Mary Priya Sebastian
Deep Learning Based Text Classification: A Comprehensive Review.arXiv 2020paper
Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu, Jianfeng Gao
Text Classification Algorithms: A Survey.arXiv 2019paper
Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura E. Barnes, Donald E. Brown
A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects.arXiv 2020paper
Zewen Li, Wenjie Yang, Shouheng Peng, Fan Liu
A Survey of End-to-End Driving: Architectures and Training Methods.arXiv 2020paper
Ardi Tampuu, Maksym Semikin, Naveed Muhammad, Dmytro Fishman, Tambet Matiisen
A Survey on Latent Tree Models and Applications.Journal of Artificial Intelligence Research 2013paper
Raphael Mourad, Christine Sinoquet, Nevin L. Zhang, Tengfei Liu, Philippe Leray
An Attentive Survey of Attention Models.arXiv 2019paper
Sneha Chaudhari, Gungor Polatkan, Rohan Ramanath, Varun Mithal
Binary Neural Networks: A Survey.Pattern Recognition 2020paper
Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, Nicu Sebe
Deep Echo State Network (DeepESN): A Brief Survey.arXiv 2017paper
Claudio Gallicchio, Alessio Micheli
Recent Advances in Convolutional Neural Networks.Pattern Recognition 2018paper
Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, Tsuhan Chen
Sum-product networks: A survey.arXiv 2020paper
Iago París, Raquel Sánchez-Cauce, Francisco Javier Díez
Survey on the attention based RNN model and its applications in computer vision.arXiv 2016paper
Feng Wang, David M. J. Tax
Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks.arXiv 2019paper
Ralf C. Staudemeyer, Eric Rothstein Morris
A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions.arXiv 2020paper
Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, Xin Wang
A Survey on Neural Architecture Search.arXiv 2019paper
Martin Wistuba, Ambrish Rawat, Tejaswini Pedapati
AutoML: A Survey of the State-of-the-Art.arXiv 2019paper
Xin He, Kaiyong Zhao, Xiaowen Chu
Benchmark and Survey of Automated Machine Learning Frameworks.arXiv 2020paper
Marc-André Zoller, Marco F. Huber
Neural Architecture Search: A Survey.Journal of Machine Learning Research 2019paper
Thomas Elsken, Jan Hendrik Metzen, Frank Hutter
A survey of non-exchangeable priors for Bayesian nonparametric models.IEEE 2015paper
Nicholas J. Foti, Sinead Williamson
Bayesian Nonparametric Space Partitions: A Survey.arXiv 2020paper
Xuhui Fan, Bin Li, Ling Luo, Scott A. Sisson
Towards Bayesian Deep Learning: A Survey.arXiv 2016paper
Hao Wang, Dityan Yeung
A Survey of Classification Techniques in the Area of Big Data.arXiv 2015paper
Praful Koturwar, Sheetal Girase, Debajyoti Mukhopadhyay
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges.arXiv 2020paper
Laura P. Swiler, Mamikon Gulian, Ari Frankel, Cosmin Safta, John D. Jakeman
A Survey on Multi-View Clustering.arXiv 2017paper
Guoqing Chao, Shiliang Sun, Jinbo Bi
Deep learning for time series classification: a review.arXiv 2019paper
Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, Pierre-Alain Muller
How Complex is your classification problem? A survey on measuring classification complexity.ACM 2019paper
Ana Carolina Lorena, Luis P F Garcia, Jens Lehmann, Marcilio C P Souto, Tin K Ho
Automatic Curriculum Learning For Deep RL: A Short Survey.arXiv 2020paper
Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, Pierre-Yves Oudeyer
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey.arXiv 2020paper
Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, Peter Stone
A survey on Image Data Augmentation for Deep Learning.Journal of Big Data 2019paper
Connor Shorten
Time Series Data Augmentation for Deep Learning: A Survey.arXiv 2020paper
Qingsong Wen, Liang Sun, Xiaomin Song, Jingkun Gao, Xue Wang, Huan Xu
A Survey of Neuromorphic Computing and Neural Networks in Hardware.arXiv 2017paper
Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell, Mark E. Dean, Garrett S. Rose, James S. Plank
A Survey on Deep Hashing Methods.arXiv 2020paper
Xiao Luo, Chong Chen, Huasong Zhong, Hao Zhang, Minghua Deng, Jianqiang Huang, Xiansheng Hua
A survey on modern trainable activation functions.arXiv 2020paper
Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, Roberto Prevete
Convergence of Edge Computing and Deep Learning: A Comprehensive Survey.IEEE 2020paper
Xiaofei Wang, Yiwen Han, Victor C.M. Leung, Dusit Niyato, Xueqiang Yan, Xu Chen
Deep learning.nature 2015paper
Yann LeCun
Deep Learning on Graphs: A Survey.IEEE 2018paper
Ziwei Zhang, Peng Cui, Wenwu Zhu
Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective.arXiv 2019paper
Guan-Horng Liu, Evangelos A. Theodorou
Geometric Deep Learning: Going beyond Euclidean data.IEEE 2016paper
Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst
Improving Deep Learning Models via Constraint-Based Domain Knowledge: a Brief Survey.arXiv 2020paper
Andrea Borghesi, Federico Baldo, Michela Milano
Review: Ordinary Differential Equations For Deep Learning.arXiv 2019paper
Xinshi Chen
Survey of Dropout Methods for Deep Neural Networks.arXiv 2019paper
Alex Labach, Hojjat Salehinejad, Shahrokh Valaee
Survey of Expressivity in Deep Neural Networks.arXiv 2016paper
Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, Jascha Sohldickstein
Survey of reasoning using Neural networks.arXiv 2017paper
Amit Sahu
The Deep Learning Compiler: A Comprehensive Survey.arXiv 2020paper
Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan, Depei Qian
The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches.arXiv 2018paper
Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, Vijayan K Asari
Time Series Forecasting With Deep Learning: A Survey.arXiv 2020paper
Bryan Lim, Stefan Zohren
A Brief Survey of Deep Reinforcement Learning.arXiv 2017paper
Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, Anil A Bharath
A Short Survey On Memory Based Reinforcement Learning.arXiv 2019paper
Dhruv Ramani
A Short Survey on Probabilistic Reinforcement Learning.arXiv 2019paper
Reazul Hasan Russel
A Survey of Inverse Reinforcement Learning: Challenges, Methods and Progress.arXiv 2018paper
Saurabh Arora, Prashant Doshi
A Survey of Reinforcement Learning Algorithms for Dynamically Varying Environments.arXiv 2020paper
Sindhu Padakandla
A Survey of Reinforcement Learning Informed by Natural Language.IJCAI 2019paper
Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob N. Foerster, Jacob Andreas, Edward Grefenstette, Shimon Whiteson, Tim Rocktaschel
A Survey of Reinforcement Learning Techniques: Strategies, Recent Development, and Future Directions.arXiv 2020paper
Amit Kumar Mondal
A survey on intrinsic motivation in reinforcement learning.arXiv 2019paper
Aubret, Arthur, Matignon, Laetitia, Hassas, Salima
A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots.arXiv 2019paper
Nicolai A. Lynnerup, Laura Nolling, Rasmus Hasle, John Hallam
Deep Reinforcement Learning: An Overview.arXiv 2017paper
Yuxi Li
Feature-Based Aggregation and Deep Reinforcement Learning: A Survey and Some New Implementations.IEEE 2019paper
Dimitri P. Bertsekas
A Survey towards Federated Semi-supervised Learning.FRUCT 2020paper
Yilun Jin, Xiguang Wei, Yang Liu, Qiang Yang
Advances and Open Problems in Federated Learning.arXiv 2019paper
Peter Kairouz, H Brendan Mcmahan, Brendan Avent, Aurelien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G L Doliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary A Garrett, Adria Gascon, Badih Ghazi, Phillip B Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecny, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrede Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Ozgur, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramer, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X Yu, Han Yu, Sen Zhao
Threats to Federated Learning: A Survey.CoRL 2019 2020paper
Lingjuan Lyu, Han Yu, Qiang Yang
Towards Utilizing Unlabeled Data in Federated Learning: A Survey and Prospective.arXiv 2020paper
Yilun Jin, Xiguang Wei, Yang Liu, Qiang Yang
A Survey of Zero-Shot Learning: Settings, Methods, and Applications.ACM 2019paper
Wei Wang,Vincent W. Zheng,Han Yu,Chunyan Miao
Few-shot Learning: A Survey.arXiv 2019paper
Yaqing Wang, Quanming Yao
Generalizing from a Few Examples: A Survey on Few-Shot Learning.ACM 2019paper
Yaqing Wang, Quanming Yao, James Kwok, Lionel M. Ni
A survey of dimensionality reduction techniques.arXiv 2014paper
C.O.S. Sorzano, J. Vargas, A. Pascual Montano
A Survey of Predictive Modelling under Imbalanced Distributions.arXiv 2015paper
Paula Branco, Luis Torgo, Rita Ribeiro
A Survey on Activation Functions and their relation with Xavier and He Normal Initialization.arXiv 2020paper
Leonid Datta
A Survey on Data Collection for Machine Learning: a Big Data -- AI Integration Perspective.arXiv 2018paper
Yuji Roh, Geon Heo, Steven Euijong Whang
A survey on feature weighting based K-Means algorithms.Journal of Classification 2016paper
Renato Cordeiro de Amorim
A Survey on Graph Kernels.Applied Network Science 2020paper
Nils M. Kriege, Fredrik D. Johansson, Christopher Morris
A Survey on Multi-output Learning.IEEE 2019paper
Donna Xu, Yaxin Shi, Ivor W. Tsang, Yew-Soon Ong, Chen Gong, Xiaobo Shen
A Survey on Resilient Machine Learning.arXiv 2017paper
Atul Kumar, Sameep Mehta
A Survey on Surrogate Approaches to Non-negative Matrix Factorization.Vietnam journal of mathematics 2018paper
Pascal Fernsel, Peter Maass
A Tutorial on Network Embeddings.arXiv 2018paper
Haochen Chen, Bryan Perozzi, Rami Al-Rfou, Steven Skiena
Adversarial Examples in Modern Machine Learning: A Review.arXiv 2019paper
Rey Reza Wiyatno, Anqi Xu, Ousmane Dia, Archy de Berker
Algorithms Inspired by Nature: A Survey.arXiv 2019paper
Pranshu Gupta
Deep Tree Transductions - A Short Survey.INNSBDDL 2019paper
Davide Bacciu, Antonio Bruno
Graph Representation Learning: A Survey.APSIPA Transactions on Signal and Information Processing 2019paper
Fenxiao Chen, Yuncheng Wang, Bin Wang, C.-C. Jay Kuo
Heuristic design of fuzzy inference systems: A review of three decades of research.Engineering Applications of Artificial Intelligence 2019paper
Varun Ojha, Ajith Abraham, Vaclav Snasel
Hierarchical Mixtures-of-Experts for Exponential Family Regression Models with Generalized Linear Mean Functions: A Survey of Approximation and Consistency Results.arXiv 2013paper
Wenxin Jiang, Martin A. Tanner
Hyperbox based machine learning algorithms: A comprehensive survey.arXiv 2019paper
Thanh Tung Khuat, Dymitr Ruta, Bogdan Gabrys
Imbalance Problems in Object Detection: A Review.IEEE 2019paper
Kemal Oksuz, Baris Can Cam, Sinan Kalkan, Emre Akbas
Learning Representations of Graph Data -- A Survey.arXiv 2019paper
Mital Kinderkhedia
Machine Learning at the Network Edge: A Survey.arXiv 2020paper
M.G. Sarwar Murshed, Christopher Murphy, Daqing Hou, Nazar Khan, Ganesh Ananthanarayanan, Faraz Hussain
Machine Learning for Spatiotemporal Sequence Forecasting: A Survey.arXiv 2018paper
Xingjian Shi, Dit-Yan Yeung
Machine Learning in Network Centrality Measures: Tutorial and Outlook.Association for Computing Machinery 2018paper
Felipe Grando, Lisandro Zambenedetti Granville, Luís C. Lamb
Machine Learning Testing: Survey, Landscapes and Horizons.arXiv 2019paper
Jie M. Zhang, Mark Harman, Lei Ma, Yang Liu
Machine Learning with World Knowledge: The Position and Survey.arXiv 2017paper
Yangqiu Song, Dan Roth
Mean-Field Learning: a Survey.arXiv 2012paper
Hamidou Tembine, Raúl Tempone, Pedro Vilanova
Multi-Objective Multi-Agent Decision Making: A Utility-based Analysis and Survey.Autonomous Agents and Multi-Agent Systems 2020paper
Roxana Radulescu, Patrick Mannion, Diederik M. Roijers, Ann Nowé
Narrative Science Systems: A Review.International Journal of Research in Computer Science 2015paper
Paramjot Kaur Sarao, Puneet Mittal, Rupinder Kaur
Network Representation Learning: A Survey.IEEE 2020paper
Daokun Zhang, Jie Yin, Xingquan Zhu, Chengqi Zhang
Relational inductive biases, deep learning, and graph networks.arXiv 2018paper
Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flores Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gül?ehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, Razvan Pascanu
Relational Representation Learning for Dynamic (Knowledge) Graphs: A Survey.JMLR 2019paper
Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, Pascal Poupart
Statistical Queries and Statistical Algorithms: Foundations and Applications.arXiv 2020paper
Lev Reyzin
Structure Learning of Probabilistic Graphical Models: A Comprehensive Survey.arXiv 2011paper
Yang Zhou
Survey on Feature Selection.arXiv 2015paper
Tarek Amr Abdallah, Beatriz de La Iglesia
Survey on Five Tribes of Machine Learning and the Main Algorithms.Software Guide 2019paper
LI Xu-ran, DING Xiao-hong
Survey: Machine Learning in Production Rendering.arXiv 2020paper
Shilin Zhu
The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses.arXiv 2018paper
Dirk Sudholt
Tutorial on Variational Autoencoders.arXiv 2016paper
Carl Doersch
Unsupervised Cross-Lingual Representation Learning.ACL 2019paper
Sebastian Ruder, Anders Sogaard, Ivan Vulic
Verification for Machine Learning, Autonomy, and Neural Networks Survey.arXiv 2018paper
Weiming Xiang, Patrick Musau, Ayana A. Wild, Diego Manzanas Lopez, Nathaniel Hamilton, Xiaodong Yang, Joel Rosenfeld, Taylor T. Johnson
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications.arXiv 2020paper
Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, Jieping Ye
A Survey on Generative Adversarial Networks: Variants, Applications, and Training.arXiv 2020paper
Abdul Jabbar, Xi Li, Bourahla Omar
Generative Adversarial Networks: A Survey and Taxonomy.arXiv 2019paper
Zhengwei Wang, Qi She, Tomas E Ward
Generative Adversarial Networks: An Overview.IEEE 2018paper
Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, Anil A Bharath
How Generative Adversarial Nets and its variants Work: An Overview of GAN.arXiv 2017paper
Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, Sungroh Yoon
Stabilizing Generative Adversarial Network Training: A Survey.arXiv 2020paper
Maciej Wiatrak, Stefano V. Albrecht, Andrew Nystrom
Stabilizing Generative Adversarial Networks: A Survey.arXiv 2019paper
Maciej Wiatrak, Stefano V. Albrecht, Andrew Nystrom
A Comprehensive Survey on Graph Neural Networks.IEEE 2019paper
Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu
A Survey on The Expressive Power of Graph Neural Networks.arXiv 2020paper
Ryoma Sato
Adversarial Attack and Defense on Graph Data: A Survey.arXiv 2018paper
Lichao Sun, Ji Wang, Philip S. Yu, Bo Li
Bridging the Gap between Spatial and Spectral Domains: A Survey on Graph Neural Networks.arXiv 2020paper
Zhiqian Chen, Fanglan Chen, Lei Zhang, Taoran Ji, Kaiqun Fu, Liang Zhao, Feng Chen, Chang-Tien Lu
Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey.arXiv 2020paper
Joakim Skarding, Bogdan Gabrys, Katarzyna Musial
Graph embedding techniques, applications, and performance: A survey.Knowledge Based Systems 2017paper
Palash Goyal, Emilio Ferrara
Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective.arXiv 2020paper
Luis C. Lamb, Artur Garcez, Marco Gori, Marcelo Prates, Pedro Avelar, Moshe Vardi
Graph Neural Networks: A Review of Methods and Applications.arXiv 2018paper
Maosong Sun, Zhengyan Zhang, Ganqu Cui, Cheng Yang, Jie Zhou, Zhiyuan Liu
Introduction to Graph Neural Networks.IEEE 2020paper
Zhiyuan Liu, Jie Zhou
Tackling Graphical NLP problems with Graph Recurrent Networks.arXiv 2019paper
Linfeng Song
A Survey Of Methods For Explaining Black Box Models.ACM 2018paper
Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, Dino Pedreschi
A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing, Adversarial Attack and Defence, and Interpretability.arXiv 2018paper
Xiaowei Huang
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation.Sigkdd Explorations 2020paper
Raha Moraffah, Mansooreh Karami, Ruocheng Guo, Adrienne Raglin, Huan Liu
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI.Information Fusion 2020paper
Alejandro Barredo Arrieta, Natalia Diazrodriguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gillopez, Daniel Molina, Richard Benjamins, Raja Chatila, Francisco Herrera
Explainable Reinforcement Learning: A Survey.CD-MAKE 2020 2020paper
Erika Puiutta, Eric M. S. P. Veith
Foundations of Explainable Knowledge-Enabled Systems.Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges/arXiv 2020paper
Shruthi Chari
How Generative Adversarial Networks and Their Variants Work: An Overview.ACM 2017paper
Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, Sungroh Yoon
Language (Technology) is Power: A Critical Survey of "Bias" in NLP.Association for Computational Linguistics 2020paper
Su Lin Blodgett, Solon Barocas, Hal Daumé III, Hanna Wallach
Survey & Experiment: Towards the Learning Accuracy.arXiv 2010paper
Zeyuan Allen Zhu
Understanding Neural Networks via Feature Visualization: A survey.arXiv 2019paper
Anh Nguyen, Jason Yosinski, Jeff Clune
Visual interpretability for deep learning: a survey.Journal of Zhejiang University Science C 2018paper
Quanshi Zhang, Songchun Zhu
Visualisation of Pareto Front Approximation: A Short Survey and Empirical Comparisons.CEC 2019paper
Huiru Gao, Haifeng Nie, Ke Li
A Comprehensive Overview and Survey of Recent Advances in Meta-Learning.arXiv 2020paper
Huimin Peng
Meta-Learning in Neural Networks: A Survey.arXiv 2020paper
Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, Amos J. Storkey
Meta-Learning: A Survey.arXiv 2018paper
Joaquin Vanschoren
A Survey on Metric Learning for Feature Vectors and Structured Data.arXiv 2013paper
Aurélien Bellet, Amaury Habrard, Marc Sebban
A Tutorial on Distance Metric Learning: Mathematical Foundations, Algorithms and Experiments.arXiv 2018paper
Juan Luis Suárez, Salvador García, Francisco Herrera
A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications.Neural Networks 2019paper
Leonardo Enzo Brito da Silva, Islam Elnabarawy, Donald C. Wunsch II
A Survey of Machine Learning Methods and Challenges for Windows Malware Classification.arXiv 2020paper
Edward Raff, Charles Nicholas
A survey on deep hashing for image retrieval.arXiv 2020paper
Xiaopeng Zhang
A Survey on Deep Learning based Brain-Computer Interface: Recent Advances and New Frontiers.arXiv 2019paper
Xiang Zhang, Lina Yao, Xianzhi Wang, Jessica J M Monaghan, David Mcalpine, Yu Zhang
A Survey on Deep Learning in Medical Image Analysis.Medical Image Analysis 2017paper
Geert J S Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud A A Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A W M Van Der Laak, Bram Van Ginneken, Clara I Sanchez
Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial.IEEE 2019paper
Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin, Mérouane Debbah
How Developers Iterate on Machine Learning Workflows -- A Survey of the Applied Machine Learning Literature.arXiv 2018paper
Doris Xin, Litian Ma, Shuchen Song, Aditya G. Parameswaran
Machine Learning Aided Static Malware Analysis: A Survey and Tutorial.arXiv 2018paper
Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, Katrin Franke
Machine Learning for Survival Analysis: A Survey.arXiv 2017paper
Ping Wang, Yan Li, Chandan K. Reddy
The Creation and Detection of Deepfakes: A Survey.arXiv 2020paper
Yisroel Mirsky, Wenke Lee
A Survey of Model Compression and Acceleration for Deep Neural Networks.arXiv 2017paper
Yu Cheng, Duo Wang, Pan Zhou, Tao Zhang
A Survey on Methods and Theories of Quantized Neural Networks.arXiv 2018paper
Yunhui Guo
An Overview of Neural Network Compression.arXiv 2020paper
J O Neill
Knowledge Distillation: A Survey.arXiv 2020paper
Jianping Gou, Baosheng Yu, Stephen John Maybank, Dacheng Tao
Pruning Algorithms to Accelerate Convolutional Neural Networks for Edge Applications: A Survey.arXiv 2020paper
Jiayi Liu, Samarth Tripathi, Unmesh Kurup, Mohak Shah
A Brief Review on Multi-Task Learning.Multimedia Tools and Applications 2018paper
Kimhan Thung, Chong Yaw Wee
A Survey on Multi-Task Learning.arXiv 2017paper
Yu Zhang, Qiang Yang
A Survey on Multi-view Learning.arXiv 2013paper
Chang Xu, Dacheng Tao, Chao Xu
An overview of multi-task learning.National Science Review 2018paper
Yu Zhang, Qiang Yang
An Overview of Multi-Task Learning in Deep Neural Networks.arXiv 2017paper
Sebastian Ruder
Revisiting Multi-Task Learning in the Deep Learning Era.arXiv 2020paper
Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, Dengxin Dai, Luc Van Gool
A Survey of Algorithms and Analysis for Adaptive Online Learning.Journal of Machine Learning Research 2017paper
H. Brendan McMahan
Online Learning: A Comprehensive Survey.arXiv 2018paper
Steven C.H. Hoi, Doyen Sahoo, Jing Lu, Peilin Zhao
Preference-based Online Learning with Dueling Bandits: A Survey.arXiv 2018paper
Robert Busa-Fekete, Eyke Hüllermeier, Adil El Mesaoudi-Paul
A Survey of Optimization Methods from a Machine Learning Perspective.arXiv 2019paper
Shiliang Sun, Zehui Cao, Han Zhu, Jing Zhao
A Systematic and Meta-analysis Survey of Whale Optimization Algorithm.Comput. Intell. Neurosci. 2019paper
Hardi M. Mohammed, Shahla U. Umar, Tarik A. Rashid
An overview of gradient descent optimization algorithms.arXiv 2017paper
Sebastian Ruder
Convex Optimization Overview.IEEE 2008paper
Nikos Komodakis
Gradient Boosting Machine: A Survey.arXiv 2019paper
Zhiyuan He, Danchen Lin, Thomas Lau, Mike Wu
Optimization for deep learning: theory and algorithms.arXiv 2019paper
Ruoyu Sun
Optimization Models for Machine Learning: A Survey.arXiv 2019paper
Claudio Gambella, Bissan Ghaddar, Joe Naoum-Sawaya
Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives.Machine Learning and Knowledge Extraction 2019paper
Saptarshi Sengupta, Sanchita Basak, Richard Alan Peters II
A brief introduction to weakly supervised learning.arXiv 2018paper
Zhihua Zhou
A Survey on Semi-Supervised Learning Techniques.arXiv 2014paper
V. Jothi Prakash, Dr. L.M. Nithya
Improvability Through Semi-Supervised Learning: A Survey of Theoretical Results.arXiv 2019paper
Alexander Mey, Marco Loog
Learning from positive and unlabeled data: a survey.Machine Learning 2020paper
Jessa Bekker, Jesse Davis
A Comprehensive Survey on Transfer Learning.arXiv 2019paper
Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, Qing He
A Survey of Unsupervised Deep Domain Adaptation.arXiv 2020paper
Garrett Wilson, Diane J. Cook
A Survey on Deep Transfer Learning.ICANN 2018paper
Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, Chunfang Liu
A survey on domain adaptation theory: learning bounds and theoretical guarantees.arXiv 2020paper
Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, Younès Bennani
Evolution of transfer learning in natural language processing.arXiv 2019paper
Aditya Malte, Pratik Ratadiya
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.arXiv 2019paper
Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu
Neural Unsupervised Domain Adaptation in NLP---A Survey.arXiv 2020paper
Alan Ramponi, Barbara Plank
Transfer Adaptation Learning: A Decade Survey.arXiv 2019paper
Lei Zhang
A Survey on Bias and Fairness in Machine Learning.arXiv 2019paper
Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, Aram Galstyan
Differential Privacy and Machine Learning: a Survey and Review.arXiv 2014paper
Zhanglong Ji, Zachary C. Lipton, Charles Elkan
Tutorial: Safe and Reliable Machine Learning.arXiv 2019paper
Suchi Saria, Adarsh Subbaswamy
Ziyang Wang, Nuo Xu, Bei Li, Yinqiao Li, Quan Du, Tong Xiao, and Jingbo Zhu
Please feel free to contact us if you have any questions (wangziyang [at] stumail.neu.edu.cn or libei_neu [at] outlook.com).
We would like to thank the people who have contributed to this project. They are
Xin Zeng, Laohu Wang, Chenglong Wang, Xiaoqian Liu, Xuanjun Zhou, Jingnan Zhang, Yongyu Mu, Zefan Zhou, Yanhong Jiang, Xinyang Zhu, Xingyu Liu, Dong Bi, Ping Xu, Zijian Li, Fengning Tian, Hui Liu, Kai Feng, Yuhao Zhang, Chi Hu, Di Yang, Lei Zheng, Hexuan Chen, Zeyang Wang, Tengbo Liu, Xia Meng, Weiqiao Shan, Shuhan Zhou, Tao Zhou, Runzhe Cao, Yingfeng Luo, Binghao Wei, Wandi Xu, Yan Zhang, Yichao Wang, Mengyu Ma, Zihao Liu
題目
NLP注意力機製綜述論文翻譯,Attention, please! A Critical Review of Neural Attention Models in Natural Language Processing
關鍵詞
注意力機製,自然語言處理,深度學習,人工智能
簡介
注意力是一種廣泛用於神經體係結構的越來越流行的機製。由於該領域的快速發展,仍然缺少對注意力的係統概述。 在本文中,我們為自然語言處理的注意力體係結構定義了一個統一的模型,重點是旨在與文本數據的矢量表示一起工作的體係結構。 我們討論了提案不同的方麵,注意力的可能用途,並繪製了該領域的主要研究活動和公開挑戰。
作者
Andrea Galassi
Department of Computer Science and Engineering (DISI),
University of Bologna, Bologna, Italy ;
Marco Lippi
Department of Sciences and Methods for Engineering (DISMI),
University of Modena and Reggio Emilia, Reggio Emilia, Italy ;
Paolo Torroni
Department of Computer Science and Engineering (DISI),
University of Bologna, Bologna, Italy
The tutorial is written for those who would like an introduction to reinforcement learning (RL). The aim is to provide an intuitive presentation of the ideas rather than concentrate on the deeper mathematics underlying the topic. RL is generally used to solve the so-called Markov decision problem (MDP). In other words, the problem that you are attempting to solve with RL should be an MDP or its variant. The theory of RL relies on dynamic programming (DP) and artificial intelligence (AI). We will begin with a quick description of MDPs. We will discuss what we mean by “complex” and “large-scale” MDPs. Then we will explain why RL is needed to solve complex and large-scale MDPs. The semi-Markov decision problem (SMDP) will also be covered.
The tutorial is meant to serve as an introduction to these topics and is based mostly on the book: “Simulation-based optimization: Parametric Optimization techniques and reinforcement learning” [4]. The book discusses this topic in greater detail in the context of simulators. There are at least two other textbooks that I would recommend you to read: (i) Neuro-dynamic programming [2] (lots of details on convergence analysis) and (ii) Reinforcement Learning: An Introduction [11] (lots of details on underlying AI concepts). A more recent tutorial on this topic is [8]. This tutorial has 2 sections: • Section 2 discusses MDPs and SMDPs. • Section 3 discusses RL. By the end of this tutorial, you should be able to • Identify problem structures that can be set up as MDPs / SMDPs. • Use some RL algorithms.
With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository:https://github.com/Jyouhou/SceneTextPapers.
Differentiable Graphics with TensorFlow 2.0
Deep learning has introduced a profound paradigm change in the recent years, allowing to solve significantly more complex perception problems than previously possible. This paradigm shift has positively impacted a tremendous number of fields with a giant leap forward in computer vision and computer graphics algorithms. The development of public libraries such as Tensorflow are in a large part responsible for the massive growth of AI. These libraries made deep learning easily accessible to every researchers and engineers allowing fast advances in developing deep learning techniques in the industry and academia. We will start this course with an introduction to deep learning and present the newly released TensorFlow 2.0 with a focus on best practices and new exciting functionalities. We will then show different tips, tools, and algorithms to visualize and interpret complex neural networks by using TensorFlow. Finally, we will introduce a novel TensorFlow library containing a set of graphics inspired differentiable layers allowing to build structured neural networks to solve various two and three dimensional perception tasks. To make the course interactive we will punctuate the presentations with real time demos in the form of Colab notebooks. Basic prior familiarity with deep learning will be assumed.** Deep learning has introduced a profound paradigm change in the recent years, allowing to solve significantly more complex perception problems than previously possible. This paradigm shift has positively impacted a tremendous number of fields with a giant leap forward in computer vision and computer graphics algorithms. The development of public libraries such as Tensorflow are in a large part responsible for the massive growth of AI. These libraries made deep learning easily accessible to every researchers and engineers allowing fast advances in developing deep learning techniques in the industry and academia. We will start this course with an introduction to deep learning and present the newly released TensorFlow 2.0 with a focus on best practices and new exciting functionalities. We will then show different tips, tools, and algorithms to visualize and interpret complex neural networks by using TensorFlow. Finally, we will introduce a novel TensorFlow library containing a set of graphics inspired differentiable layers allowing to build structured neural networks to solve various two and three dimensional perception tasks. To make the course interactive we will punctuate the presentations with real time demos in the form of Colab notebooks. Basic prior familiarity with deep learning will be assumed.