Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this paper aims to provide a comprehensive survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research.

4
0
下載
關閉預覽

相關內容

Deep learning-based models encounter challenges when processing long-tailed data in the real world. Existing solutions usually employ some balancing strategies or transfer learning to deal with the class imbalance problem, based on the image modality. In this work, we present a visual-linguistic long-tailed recognition framework, termed VL-LTR, and conduct empirical studies on the benefits of introducing text modality for long-tailed recognition (LTR). Compared to existing approaches, the proposed VL-LTR has the following merits. (1) Our method can not only learn visual representation from images but also learn corresponding linguistic representation from noisy class-level text descriptions collected from the Internet; (2) Our method can effectively use the learned visual-linguistic representation to improve the visual recognition performance, especially for classes with fewer image samples. We also conduct extensive experiments and set the new state-of-the-art performance on widely-used LTR benchmarks. Notably, our method achieves 77.2% overall accuracy on ImageNet-LT, which significantly outperforms the previous best method by over 17 points, and is close to the prevailing performance training on the full ImageNet. Code shall be released.

0
0
0
下載
預覽

Active learning (AL) attempts to maximize the performance gain of the model by marking the fewest samples. Deep learning (DL) is greedy for data and requires a large amount of data supply to optimize massive parameters, so that the model learns how to extract high-quality features. In recent years, due to the rapid development of internet technology, we are in an era of information torrents and we have massive amounts of data. In this way, DL has aroused strong interest of researchers and has been rapidly developed. Compared with DL, researchers have relatively low interest in AL. This is mainly because before the rise of DL, traditional machine learning requires relatively few labeled samples. Therefore, early AL is difficult to reflect the value it deserves. Although DL has made breakthroughs in various fields, most of this success is due to the publicity of the large number of existing annotation datasets. However, the acquisition of a large number of high-quality annotated datasets consumes a lot of manpower, which is not allowed in some fields that require high expertise, especially in the fields of speech recognition, information extraction, medical images, etc. Therefore, AL has gradually received due attention. A natural idea is whether AL can be used to reduce the cost of sample annotations, while retaining the powerful learning capabilities of DL. Therefore, deep active learning (DAL) has emerged. Although the related research has been quite abundant, it lacks a comprehensive survey of DAL. This article is to fill this gap, we provide a formal classification method for the existing work, and a comprehensive and systematic overview. In addition, we also analyzed and summarized the development of DAL from the perspective of application. Finally, we discussed the confusion and problems in DAL, and gave some possible development directions for DAL.

0
0
0
下載
預覽

This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.

0
16
1
下載
預覽

Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 200+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.

0
108
1
下載
預覽

Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

0
32
1
下載
預覽

Deep learning has been shown successful in a number of domains, ranging from acoustics, images to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, a significant amount of research efforts have been devoted to this area, greatly advancing graph analyzing techniques. In this survey, we comprehensively review different kinds of deep learning methods applied to graphs. We divide existing methods into three main categories: semi-supervised methods including Graph Neural Networks and Graph Convolutional Networks, unsupervised methods including Graph Autoencoders, and recent advancements including Graph Recurrent Neural Networks and Graph Reinforcement Learning. We then provide a comprehensive overview of these methods in a systematic manner following their history of developments. We also analyze the differences of these methods and how to composite different architectures. Finally, we briefly outline their applications and discuss potential future directions.

0
40
1
下載
預覽

Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.

0
9
0
下載
預覽

As a new classification platform, deep learning has recently received increasing attention from researchers and has been successfully applied to many domains. In some domains, like bioinformatics and robotics, it is very difficult to construct a large-scale well-annotated dataset due to the expense of data acquisition and costly annotation, which limits its development. Transfer learning relaxes the hypothesis that the training data must be independent and identically distributed (i.i.d.) with the test data, which motivates us to use transfer learning to solve the problem of insufficient training data. This survey focuses on reviewing the current researches of transfer learning by using deep neural network and its applications. We defined deep transfer learning, category and review the recent research works based on the techniques used in deep transfer learning.

0
10
1
下載
預覽

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

0
10
0
下載
預覽

Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL. First, we classify different MTL algorithms into several categories: feature learning approach, low-rank approach, task clustering approach, task relation learning approach, dirty approach, multi-level approach and deep learning approach. In order to compare different approaches, we discuss the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, batch MTL models are difficult to handle this situation and online, parallel and distributed MTL models as well as feature hashing are reviewed to reveal the computational and storage advantages. Many real-world applications use MTL to boost their performance and we introduce some representative works. Finally, we present theoretical analyses and discuss several future directions for MTL.

0
5
0
下載
預覽
小貼士
文章信息
相關主題
相關論文
Changyao Tian,Wenhai Wang,Xizhou Zhu,Xiaogang Wang,Jifeng Dai,Yu Qiao
0+閱讀 · 2021年12月9日
Pengzhen Ren,Yun Xiao,Xiaojun Chang,Po-Yao Huang,Zhihui Li,Brij B. Gupta,Xiaojiang Chen,Xin Wang
0+閱讀 · 2021年12月5日
Transfer Learning in Deep Reinforcement Learning: A Survey
Zhuangdi Zhu,Kaixiang Lin,Jiayu Zhou
16+閱讀 · 2020年9月16日
Jiang Lu,Pinghua Gong,Jieping Ye,Changshui Zhang
108+閱讀 · 2020年9月6日
Image Segmentation Using Deep Learning: A Survey
Shervin Minaee,Yuri Boykov,Fatih Porikli,Antonio Plaza,Nasser Kehtarnavaz,Demetri Terzopoulos
32+閱讀 · 2020年1月15日
Ziwei Zhang,Peng Cui,Wenwu Zhu
40+閱讀 · 2018年12月11日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
9+閱讀 · 2018年9月6日
A Survey on Deep Transfer Learning
Chuanqi Tan,Fuchun Sun,Tao Kong,Wenchang Zhang,Chao Yang,Chunfang Liu
10+閱讀 · 2018年8月6日
Andreas Kamilaris,Francesc X. Prenafeta-Boldu
10+閱讀 · 2018年7月31日
Yu Zhang,Qiang Yang
5+閱讀 · 2017年7月25日
相關資訊
Multi-Task Learning的幾篇綜述文章
深度學習自然語言處理
11+閱讀 · 2020年6月15日
人工智能 | SCI期刊專刊信息3條
Call4Papers
5+閱讀 · 2019年1月10日
強化學習的Unsupervised Meta-Learning
CreateAMind
7+閱讀 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
32+閱讀 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字閨中
10+閱讀 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
16+閱讀 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
3+閱讀 · 2018年4月15日
深度學習(deep learning)發展史
機器學習算法與Python學習
7+閱讀 · 2018年3月19日
資源|斯坦福課程:深度學習理論!
全球人工智能
14+閱讀 · 2017年11月9日
Top
微信掃碼谘詢專知VIP會員
Top